VHMPID L0 trigger Status report

Sona Pochybova 16/02/2010

Data sample:

pp@10 TeV, MB, B=0.5 T 1,5 Mevents

Track cuts:

No kinks Only tracks from module's acceptance

Acceptance:

Introduction

Last time:

- Study of particle properties inside acceptance of one module ($\Theta \sim 22.5$, $\Phi \sim 20$.)
- Possible triggering strategy
 - #Hits > 0
 - Possibility to cut out low-momentum particles (p < 2 GeV/c)

Task

Investigate the hit pattern on the planes situated in space

Geometry of the trigger

Momentum

Momentum distribution of tracks inside the module acceptance, based on whether it is a "hit" or "no hit".

We see that the "hit" flag selects tracks with p > 1 GeV/c

If a track hits **both planes** within the acceptance - "hit" track. If it does hit **one/none** of planes in acceptance - "no hit" track.

No-hit tracks, p > 3 GeV/c

There are tracks with p > 3 GeV/c that do not leave a hit in the detector

They are in the center of the module

Purity and efficiency

Purity: ~23%

Eff: 72 %

$$Purity = \frac{Number\ of\ higt\ tracks(p>3\ GeV/c)}{Number\ of\ hit\ tracks}$$

$$Efficiency = \frac{Number\ of\ hit\ tracks(p>3\ GeV/c)}{Number\ of\ tracks(p>3\ GeV/c)\ inside\ module's\ acceptance}$$

Summary and outlook

- Geometry introduction
 - L0; far from interaction point, low momentum tracks will not reach it
 - Distance natural filter
 - Using only "hit" flag we achieved purity ~ 23 %

Outlook

 Design segmentation to be able to distinguish two hits from each other and see whether it can further improve the selection in terms of purity and efficiency

Monday contribution proposal

L0 trigger

Geometry:

r1 = 500 cm, r2 = 514 cm

 $\Delta\Theta$ = 12.5 (the width of the planes in theta)

 Δ = 15 cm (distance between planes)

Acceptance of module:

$$\Theta \sim 22.5 + / - 6.25$$

$$\Phi \sim 20. +/- 10.$$

Data sample:

Track cuts:

No kinks

Only tracks within module's acceptance

"hit" - track hits both of the planes "no-hit" - track hits only one/none of the planes

"hit" flag selects tracks with p > 1 GeV/c

Distance – natural filter

$(p > 3 \text{ GeV/c})_{ALL}$	(p > 3 GeV/c) _{HIT}	All hits
924	665	2877

Purity: ~23%

Eff: 72 %

$$Purity = \frac{Number\ of\ higt\ tracks(p>3\ GeV/c)}{Number\ of\ hit\ tracks}$$

$$Efficiency = \frac{Number\ of\ hit\ tracks(p>3\ GeV/c)}{Number\ of\ tracks(p>3\ GeV/c)\ inside\ module's\ acceptance}$$