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Chapter 1

Introduction

Finding charged tracks with silicon tracker in a high density environment is rather difficult in
terms of efficiency and fake rate. Track fitting uses hits associated by the previous track finding
phase, thus the proper functioning of this latter is essential.

In the actual track finding method seeding starts from pixels. Seeds are produced by com-
bining pixel hits from the two innermost layers. If they are compatible, a further check is made
on the existence of another compatible hit in the third pixel layer. Due to the combinatorial
nature of the process, the number of possible combinations grows with track multiplicity N as
N2.

The incoming charged particle leaves energy, charge in the channels (pixels or strips) of the
detector. Neighboring channels are composed to form a cluster. The reconstructed cluster is
regarded as a single hit. Up to know only the position of a hit, a kind of center of gravity for
the cluster, has been used for track finding and fitting. It turns out that the length, direction
and the average deposited energy of the cluster contain valuable information, as well.

This report consist of two parts. The first part explains how to extract the parameters of a
cluster. They can be easily transformed to track parameters. The second part will discuss the
possible applications of the obtained track parameters, such as:

• fast vertex finding with clusters only, before track finding

• reduction of compatible cluster seeds, resulting in faster tracking, higher efficiency and
lower fake rate; in fact, track finding in track parameter space becomes possible

• V0 finding

• determination of the average energy loss of a particle (dE/dx)

Of course these advantages come at a price: a proper modelling of the detector is necessary
with the use of some powerful tools from numerical analysis.

Although most of the material shown here deals with barrel pixels, the results are easily
expanded to forward pixels, with some additional work even to strips.

The plots accompanying this study have been made for 1000 minimum bias p+p events and
a single central Pb+Pb event.

1.1 Coordinate systems

In the global coordinate system the z-axis is along the beam direction. Both x and y axes are in
the bending plane, they can also be decomposed to radial (e.g. p

T
) and azimuthal components.

The electric field E is radial, the magnetic field B is in beam direction, the Lorentz-shift due to
E × B is azimuthal.

The local coordinate system is attached to detector units. The x-axis is along azimuthal
direction, y-axis is parallel with the beam direction, z-axis is radial. The relations of local axes
to global directions and fields are summarized in Table 1.1.
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Local axis Local direction Global direction Field direction
x width azimuthal Lorentz-shift E × B

y height beam Magnetic B

z thickness radial Electric E

Table 1.1: Local axes and directions and the corresponding global directions with fields.

For the sake of full use of space some of the detector units are ”flipped”. In case of un-flipped
units the local z-axis points outwards in radial direction, while for flipped ones it points inwards.
The direction of the electric field E is always in local z direction. As a result, the measured
Lorentz-shift is always in positive azimuthal direction.

1.2 Capabilities

The parameters of a cluster can be transformed to track level. A charged particle at creation
point can be described by four geometrical parameters:

• polar angle θ, which is connected to pseudo-rapidity by cot θ ≡ sinh η

• creation point along the beam line z0

• initial azimuthal angle φ

• signed curvature qκ, related to p
T

= 0.3B/qκ

If the detector unit was segmented along the beam direction the parameters cot θ and z0 can
be extracted. If the detector unit was segmented in the azimuthal angle the parameters φ and
qκ can be obtained.

Barrel strips mostly1 lie in beam direction (segmented in azimuthal angle), thus they allow
to measure φ and qκ. Barrel pixels are segmented in both directions, they allow to measure
cot θ, z0, φ and qκ.

Relation between the average energy loss and particle momentum exists, based on an energy
loss model (”Bethe-Bloch” curve), but only if the particle type, its mass, is assumed. Since it
would introduce bias in track finding, it was kept to be a free parameter. As a result of this
choice, the projection of the path of particle onto the plane of the detector unit is well-defined

only if the size of the cluster is greater than or equal to three channels. In other words, the box
containing the cluster has to be at least three channels wide in the desired direction. Still, even
with box size of one or two channels the estimation of cluster parameter intervals is possible.

The capabilities, the efficiency of the method, is shown in Fig. 1.1. The asymmetry in the p
T

dependence present between positive and negative particles is due to the effect of Lorentz-shift.
It widens the cluster envelope in azimuthal direction for negatives, while narrows for positives.
As a result of this interesting effect, clusters belonging to negative particles are much more
usable than those belonging to positives. It is especially true for low p

T
, where the efficiency for

negatives varies from 90% to 30% in the range of p
T

= 0 - 1 GeV/c. The difference vanished for
higher p

T
, giving a steady 20%.

1.2.1 p
T

dependence

The length of the cluster in azimuthal direction as function of p
T

lx = d
r

√

4ρ2 − r2
+ δL (1.1)

1In case of double strip layers the stereo part is rotated by 5 degrees, so those strips will not be perfectly

aligned with the beam direction
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Figure 1.1: The fraction of pixel barrel clusters having at least three channels wide envelope in
the corresponding direction. In other words the plots show the efficiency of extracting φ, qκ and
cot θ, z0, respectively. Left: The efficiency for extracting parameters in azimuthal direction as
function of p

T
of the particle. The red histograms show the positive, the blue histogram shows

the negative particles. Right: The efficiency for extracting parameters in the beam direction
as function of sinh η. The magenta and light blue histograms show the number distribution of
positive and negative particles as function of p

T
and sinh η.

where d = 300 µm is the thickness of the silicon, δL = 127 µm is the Lorentz-shift, |ρ| =
p

T
/(0.3B). The pitch in x direction is hx = 100 µm. The length nx in pitch units, as function

of p
T

will be

nx =
lx
hx

= 3.0
r

√

4
( p

T

0.3B

)2 − r2

+ 1.27 (1.2)

5



2.4 Deposited energy

The energy loss model is discussed in detail in Chapter A. The typical energy loss ξ[keV] is

ξ = ǫx, ǫ =
K

2
z2 Z

A
ρ

1

β2
=

178 keV/cm

β2
(2.9)

where K = 307.075 keV g−1 cm2, Z = 14, A = 28.0855, ρ = 2.33 g/cm3 for silicon. Futhermore
the ionization energy I = 169 eV, the plasma energy h̄ωp = 17 eV. Note that 1 ADC ≈ 0.5 keV.

A good energy deposition model should describe both the resonant and Coulomb collisions
with the effects of the electronic noise. The resonant part in the fast particle approximation, as
well as the noise contribution, can be described well with a Gaussian. The energy loss distribution
of Coulomb collisions have a long tail towards high energies: this Landau function can also be
simplified to a Gaussian, taking its most probable value as mean and converting its full width
half maximum to standard deviation σC .

∆r = ξ
∑

n

Fn log
2mec

2E0n

h̄2ω2
p

= 13.30ξ, σ2
r = ξ

∑

n

FnE0n log
2mec

2E0n

h̄2ω2
p

= 11.43 keV · ξ

(2.10)

∆C = ξ

(

log
ξ

I
+ 0.20

)

, σC =
Γ

2
√

2 log 2
=

4.02ξ

2
√

2 log 2
= 1.71ξ, (2.11)

∆e = 0 σe = 500 · 3.7 eV = 1.85 keV (2.12)

The energy deposition distribution is the convolution of the three processes. The result is
also a Gaussian with the mean ∆ and variance σ2 summed:

∆ = ∆r + ∆C + ∆e = 13.50ξ + ξ log
ξ

0.169 keV
(2.13)

σ2 = σ2
r + σ2

C + σ2
e = 11.43 keV · ξ + (1.71ξ)2 + (1.85 keV)2 (2.14)

As it can be seen in Fig. 2.2 the mean ∆ is proportional to the length x. In addition σ and
∆ are closely linear. It follows that an easily calculable linear model can be formulated:

∆ = εx, σ = 0.11∆ + 4.5 ADC (2.15)

Here x is not necessarily the true path-length, it is enough if x is proportional to the true one.
This allows the use of the drift projected planar path-length for the cluster shape optimization.
Similarly ε can be different from the true average energy loss.
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Figure 2.2: Left: The mean of deposited energy per length as function of length when β = 1.
Right: The standard deviation of the Gaussian distribution as function of the mean of deposited
energy when β = 1. The line corresponding to the linear relationship σ = 0.11∆ + 4.5 ADC is
shown in dashed blue.
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2.5 Noise, digitization, zero suppression

Noise is assumed to have Gaussian distribution. Charge is converted to ADC values, truncated
to integers, the maximal allowed value is 255. Channels are zero suppressed, only those are kept
which reach the appropriate threshold.
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Chapter 6

Track parameters

Depending on the orientation of the detector unit (normal of flipped) the correspondance be-
tween local planar, local spatial and global spatial systems is shown in Table 6.1. In case of
”normal” situation the Lorentz-shift is subtracted from the exit point, for ”flipped” situation it
is subtracted from the entry point.

6.1 From cluster to track

The transformation from local to global system can be done via the rotation matrix R and the
translation vector t. It can be written for spatial vector r and directional vector v as follows.

r ≡ (rL, rT) = Rrloc + t, v ≡ (vL,vT) = Rvloc (6.1)

Geometrical relationships in the transverse plane

cos(α/2) =
rT · vT

rT vT
, sin(α/2) =

rT

2ρ
, (6.2)

If only tracks with less than a total turn (0 ≤ α < 2π) are considered, obtaining α (and the
curvature κ) is unambiguous. (The acos function returns a value defined to be between 0 and
π.)

α = 2arccos

(

rT · vT

rT vT

)

, κ ≡ 1

ρ
=

2 sin(α/2)

rT
, q = sign (vT × rT) (6.3)

Relation between directions and path-lengths

vL

vT
=

∆z

αρ
(6.4)

DetUnit Lorentz-shift Entry point Exit point
orientation acts on is at local spatial

normal entry point -z/2 +z/2
flipped exit point +z/2 -z/2

Table 6.1: Correspondance between local planar, local spatial and global spatial systems. The
particle is expected to move outwards in the global system, thus the entry point is closer to the
creation point than the exit point, in the transverse plane.
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Using the relations above the global track parameters can be calculated.

cot θ ≡ sinh η =
vL

vT
polar angle (pseudo-rapidity) (6.5)

φ = arg vT + qα azimuthal angle (6.6)

qκ =
sign (vT × rT)L

ρ
signed curvature (6.7)

z − z0 = αρ
vL

vT
shift in beam direction (6.8)
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Figure 6.2: Estimated z-coordinate of the creation point for the particles as function of cluster
position z, shown here for pixel barrel clusters with box size of at least 3 units in local y direction.
The plots give separately the distributions for the most abundant creation processes. Note the
log-scale.
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Chapter 7

Vertexing

In the actual vertexing method the primary vertex is found after the tracking phase. With
the vertex position at hand, tracks are refitted to get better estimation of their parameters.
The proper use of cluster shape information, discussed in the previous chapters, enables the
estimation of the z-position of the primary vertex z0, before track finding and fitting. This way
seeding can be limited to a much smaller phase space.

z0 can be estimated reasonably well only for pixel barrel clusters, if their container box
is at least 3 units wide in local x direction (global z direction). Clusters cannot be fitted
unambiguously, the entry and exit points are invertible. In other words, one cannot decide if
the track came from positive or negative global z. This way for a cluster there always exists two
solutions, two z0 values. One of them is the real one, the another is just a ”reflection” of the
first.

The ambiguity can be resolved if we look at not only a single cluster, but more. While the
reflections are scattered, the real ones will group around the true value of z0. A simple Gaussian
fit of the z0 distribution of clusters in the event could produce a reasonable estimate, its mean
could be the vertex position. This is not true if the multiplicity is low and/or if the z positions
of clusters are not balanced on the two side of the true z0. Outliers due to secondaries, multiply
scattered primaries, etc will also distort the estimation.

Here a robust two-step method is described which uses the concept of statistical median. If
xj are ordered (x1 ≤ x2 ≤ · · · ≤ xn−1 < xn) the median is

x̃ =

{

x(n+1)/2 if n is odd

(xn/2 + xn/2+1)/2 if n is even
(7.1)

First, some kind of initial guess is needed. Find the median of all z0 estimates. Here n will be
even, twice the number of the available clusters. For the determination of x̃ a slightly different
prescription will be used. xn/2 will be chosen if the standard variation of the lower half is smaller
than the upper half of the sample. Otherwise the xn/2+1 will be taken.

x̃′ =

{

xn/2 if σ(x1, . . . , xn/2) < σ(xn/2+1, . . . , xn)

xn/2+1 if σ(x1, . . . , xn/2) > σ(xn/2+1, . . . , xn)
(7.2)

With this first guess z̃0
′ every cluster is re-examined and one of the solutions is chosen which

gives z0 value closer to z̃0
′. The median of this newly produced sample will give the final estimate

of the true z0 = z̃0
′′, using the original definition (Eq. 7.1).

Some results are shown in Fig. 7.1. The average resolution of the determination of the primary
vertex is σz ≈ 0.35 mm. This is to be compared with the size of the interaction region σI

z = 5.3
cm. The resolution depends on the number of usable pixel barrel clusters as σz(n) ≈ 2.9cm/

√
n.

This gives a resolution of 180 µm for a central Pb+Pb event.
In case of overlapping events the task of finding the primary vertices can also be done by the

histogramming method with similar efficacy.
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Figure 7.1: Result of vertexing using 1000 minimum bias p+p events. Upper: reconstructed z0

vs Monte Carlo truth. Center left: distribution of z0 residuals. Center right: distribution of the
simulated z0 positions. The light blue Gaussian curve indicates the resolution of the vertexing
method. Bottom left: distribution of the number of usable clusters. Bottom right: achieved
standard deviation of primary vertex determination as function of number of usable clusters.
The blue curve is the result of the 1/

√
n fit.

31


	Introduction
	Coordinate systems
	Capabilities
	pT dependence

	Magnetic field
	Motion in inhomogeneous magentic field


	Detector response
	Charge diffusion
	Charge drift, Lorentz-shift
	Capacitive coupling
	Deposited energy
	Noise, digitization, zero suppression

	Cluster estimation
	Morphology
	Classification
	Weighted fit

	Cluster model
	Merit function
	Path length
	Derivatives

	Censoring and truncation of data
	Truncation
	Censoring

	Track parameters
	From cluster to track

	Vertexing
	Tracking
	Distance in parameter space
	Hierarchical clustering
	Spirals

	Energy loss model
	Cross section, components
	Mean energy loss
	The density function
	Calculation of the density function
	Other methods

	Minimization
	Log-likelihood
	Chi-squared
	Constrained minimization
	Log-likelihood


