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Energy losses of 2 and 8 GeV/c positive and negative electrons, pions and protons 
transmitted through 32-1040 /~m thick germanium and silicon targets are measured using the 
targets as semiconductor detectors. The measured energy-loss distributions are well-reproduced by 
calculations when the binding of the target electrons is taken into account. In particular, the 
increasing width, up to twice as large as the width of the Landau distribution, and the decreasing 
most probable energy loss as a function of decreasing target thickness, agree with calculations. 
The same two quantities increase as a function of the relativistic fly for/33, > 4 until a saturation 
is reached for very large values of/33'. The constancy of the Fermi plateau, the saturation value of 
the most probable energy loss, is confirmed to the one percent level for the considered/3-/ values 
and thicknesses. 

1. Introduction 

The present  work is concerned with the energy lost by  high-energy charged 

particles when  traversing solid matter.  We shall only consider the ionizat ion energy 

loss s t emming  from excitation and  ionizat ion of target atoms. Since the energy is 

lost in quanta ,  f luctuations in the energy loss will exist, and  the energy-loss process 

is described by  a dis t r ibut ion function.  

Coll is ions are usually divided into "close" and "d is tan t"  collisions, with a 

d iv id ing  impact  parameter  of the order of the size of the atom. These names  are of 
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classical origin, since the impact parameter is not always well defined quantum- 
mechanically. In a quantum-mechanical treatment, the momentum transfer is used 
to classify the collisions, but the terms "close" and "distant" are still used in the 
sense that the impact parameter b is related to a momentum transfer q by the 
"uncertainty relation", b ~ h / q .  

In the classical impact parameter description, the average energy loss is roughly 
proportional to the logarithm of the ratio between the maximum and minimum 
impact parameter. The maximum impact parameter for distant collisions increases 
proportional to T, and a logarithmic rise with T of the energy loss is expected. For 
3' >> 1 the maximum impact parameter is large compared to atomic dimensions, and 
in a dense material, the presence of atoms between the projectile and the interacting 
atom saturates the electromagnetic field in the medium due to the polarization of 
these atoms. This density effect results in a saturation of distant collisions. Another 
In 3' increase in the average energy loss exists due to the increase in the maximum 
energy transfer with 3'. This maximum energy transfer, however, does not influence 
the most probable energy loss, which is only dependent on distant collisions and 
saturates at the so-called Fermi plateau at high values of T. 

The energy-loss distribution for relativistic particles is given by a gaussian-like 
function with a high-energy tail, stemming from large, but infrequent, energy 
transfers from close collisions. When the energy loss is very large compared to the 
binding energy of the target electrons, the width of the distribution is only 
dependent on the number of electrons and not on their binding energy. The 
distribution function is then given by the Landau function. For thin targets, where 
the energy loss is comparable to or smaller than the binding energy of inner-shell 
electrons, the energy-loss distribution is broader than when the electronic binding 
energy is neglected. 

The present investigations are concerned precisely with this region of thicknesses, 
and the electronic binding energies have to be taken into account. In thin targets the 
reduction of the projectile energy when traversing the target cannot be measured 
directly, because the energy loss is extremely small compared to the projectile 
energy. However, when the target is a semiconductor detector, the energy deposited 
in the target can be measured, and this deposited energy loss is in fact closely 
related to the energy loss. The experiments have thus been restricted to silicon and 
germanium targets. 

This work is in part motivated by earlier work, where a broadening of the 
energy-loss distribution was observed [23], and in part by the increasing use of thin 
semiconductor detectors in high-energy physics for the detection of relativistic 
particles. These detectors are used mainly as position-sensitive (strip or CCD) 
detectors, often as active, "live", targets. The strip detectors have thicknesses of a 
few hundred microns, whereas the CCD detectors are very thin (some tens of 
microns). Although much work, both theoretical and experimental, has been made 
for gaseous targets (see, e.g., ref. [3] and references therein), very few investigations 
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have been performed for solid targets. A theoretical discussion, sect. 2, giving the 
necessary outline of the theory, is followed by a discussion of the experimental 
procedure in sect. 3. The experimental results are presented in sect. 4, which also 
contains the discussion and the comparison with the model calculations. 

2. Theory 

In this section the models are discussed with which the experimental results are 
compared. Normally the energy loss of relativistic particles is calculated quantum- 
mechanically, resulting in the Bethe formula with various corrections, see, e.g., ref. 
[1]. An energy-loss cross section which is needed to calculate the energy-loss 
distribution is, however, not easily obtained from this formulation. So a semiclassi- 
cal calculation is set up starting with a simple model for the energy-loss cross 
section. This calculation gives the same average energy loss as the Bethe formula. 

2.1. SEMICLASSICAL ENERGY LOSS CALCULATION 

In this model [2, 3] the target material is treated as a homogeneous, isotropic 
medium with electromagnetic properties described by a dielectric function e. The 
mean energy loss per unit path length is found as the effect of the electric field, E, 
set up in the medium due to the presence of the charged projectile moving with 
velocity v = tic. This field exerts work on the projectile giving 

d E  eE(flct ,  t ) .  fl 
. . . .  (1) 

dx /3 

This can be rewritten by solving Maxwell's equations for the Fourier transformed 
fields 

d E  

d x  
e2i f ~  cod~o fl~° dk  
fl 2~r _ ~ I/v k 

w/k2c  2_  f12 1 | 

e~ 2 _ k2c2 k2c2 e J . (2) 

Now e = e(k, ~), and the Fourier variables o~ and k are interpreted as the energy 
and momentum transfer, in units of h. The first term describes transverse excita- 
tions and the second longitudinal ones. In general the dielectric function for 
transverse and longitudinal excitations entering the first and the second term in eq. 
(2), respectively, differ [4]. However in non-magnetic materials, they coincide. In 
any case significant contributions to the transverse term only comes from e~ 2 -- k 2c2, 
i.e. in a narrow region above the lower integration limit. For the free electron gas 
and high projectile velocities the longitudinal and the transverse dielectric function 
are almost equal in this region. Furthermore, for these small k-values the dipole 
approximation is valid mad we set e(~, k) = e(~,0) - e(~) in the integration of the 
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first term, and obtain the result for the transverse contribution 

- -~x _L ~ t o d t o l m -  ln(to2+12) "}-602.,/2 (3) 

where l is the single root of the equation 

1 - - ~ 2 e ( i l ) = O .  (4) 

As will be seen later, 1 determines the density effect. When 1 - •2e(0) ~ 0, there is 
no density effect, l = 0. Also the longitudinal contribution can be expressed in terms 
of Im(1/e) 

,,= ~ v  2 Jo todto'G/~ k Im\  e(k, to) (5) 

but to perform the k-integration a model for e(k, to) is needed. It is though, possible 
to integrate the above equation [2] by first integrating over to at constant k, by 
using the sum rule 

fo ~ t o d t o l m ( - 1 / e )  = 1 2 (6) 

However, since we shall need to quantize our expression for the energy loss, when 
integrated over k, to get an energy-loss cross section, a model for e(k, to) is 
introduced. 

We will write 

with 

( ) 2  
EF. (to- (7) 

Im e(k ,  to) = 2 to n 

[~0n 
Q.(k)  = h2k2/Zm 

for k < ~2mI2on/h 
(8) 

for k > ~2m~2oJh . 

The solid is thus represented as a set of oscillators with an excitation frequency 
spectrum given by $2,(k), with only one bound state I2o, for each atomic shell. For 
energy transfers larger than ~20~ the atomic electron is treated as free. A discussion 
of the choice of ~20~ will be given later. The dipole oscillator strengths F~ will be 
approximated by F~ = q J Z ,  where q~ is the number of electrons pertaining to the 
nth shell, and Z the atomic number. The expression for I m ( -  l / e )  is normalized so 
that the sum rule (6) is fulfilled. The condition for setting e(k, to) = e(0, to) can now 
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be formulated as hf/0, << mc2; in other words, the target electrons must not be 

relativistic. 
With this model we get for the total energy loss 

e oa p~  o0 
dx  2V 2 F n 3(6o - f2o.)ln h(6O2+1 : ) +  +6O~r ~ /32 , (9) 

which can be integrated over 6O to give 

dE e 26Op2 [ 2mc2/32y2Emax l 2 ] 
. . . .  | E F .  In 7T--..-GS,2 + - -  - / 32 

dx  202 [ n Eon + h l 6Opy2 2 ] ' 
(10) 

where Ema x = h6Oma x = 2mc2/32y 2 is the maximum energy transfer, and E0n = h~2o,. 
It will suffice to use this approximate expression for Emax, since the main interest is 
the most probable energy loss, uninfluenced by the very close collisions. The 
dielectric function is given by (damping negligible) 

e(6o) = 1 - 6o~Y. 6o 2 ~  2 ,  (11) 
n 6On 

consistent with the model for Im(1/e),  where to a good approximation [5] fn = Fn 
2 2 + 6opf,. The equation determining the density effect is then and 12o2. = % 

f ,  1 
2 --- f l2y=, (12) 

n 

with asymptotic solutions 

12 = 0 for fly << %/6op, 

l 2 = 2~2 2 fo r f ly  >> % P  Y % / % ,  (13) 

giving for the energy loss 

dE 2 2 [ 2mc2/32y2Em~x 6op 
~xx = 20 ----5 In ~-g _ f l z  , /3y << 6oJ6op, (14) 

d E  2 2 e 6op 2mc2Emax 
- d--x- = 20 ~ In h26op2 , fly >> ~%/6op, (15) 

corresponding to the Bethe formula without density effect (14) and with full 
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saturation of the transverse excitations (15). The average energy loss is often given 
as eq. (14) minus the density-effect correction 8, which is then the difference 
between eq. (10) and eq. (14). The density-effect correction has been evaluated by 
Sternheimer [5,18] for most substances. The mean ionization potential in the 
present model is given by 

In I = E F ,  ln hI2,o. (16) 
n 

For a restricted energy loss or the most probable energy loss, Ema x is independent 
of ,/(subsect. 2.5), and formula (15) is independent of "t giving the Fermi plateau 
for the saturated energy loss. 

2.2. CALCULATION OF ENERGY-LOSS DISTRIBUTIONS 

The energy loss calculated above is the average of the energy losses from many 
different projectile-target atom collisions, ranging from soft excitations of outer 
shell electrons to hard collisions producing &rays. The statistical nature of these 
collisions lead to fluctuations, straggling, in the energy lost by particles penetrating 
the target. We shall only consider targets of thickness x, so thin that the energy lost 
is much less than the projectile energy. The stopping power can thus be assumed 
constant during the passage. Let us introduce 

2~re 4 
= mcg,2xNZ_p (17) 

as a measure of a typical energy loss (for Si: ~ = 17.81 [keV/mm] x/B2). The 
decisive parameter determining the shape of the energy-loss distribution is • = 
~/Em~ x. For x >> 1, there is a sufficiently large number of large energy transfers, 
that the distribution is gaussian. Assuming ~ >> EK, where Er: is an atomic binding 
energy, Landau [6] solved the problem for x << 1 in 1944. 

The unknown distribution function is the solution of the kinetic equation, as 
formulated by Landau, 

Of(x,A) 
= w ( E ) [ f ( x , a - E ) - f ( x , a ) l d e ,  (18) 

which defines f (x ,A) ,  once the collision probability (per unit length) w(E)= 
Ndo /dE  is given. Here f(x, A)dA is the probability for the projectile to have lost 
the energy A after traversing a target of thickness x. The distribution function is 
normalized, so that ff(x, Zl)dA = 1. The above integral is finite due to a finite 
maximum energy transfer Em~ , and a non-zero minimum energy transfer. The above 



J.F. Bak et al. / Landau distributions 687 

kinetic equation can be solved by applying the Laplace transformation, given by 

ep(x, p)  = fo°°f(x, a)e-PadA. (19) 

The inverse Laplace transformation is 

1 /" +ioc +o l 
f ( x , A )  = - -  2qri J-ioo+o ~p~x, p)eeadp  o > o .  (20) 

After Laplace transformation the kinetic equation takes the form 

O+(x,p) 
Ox fo ~ 

cp(x ,p)  w(E)(1 - e-PC)dE,  (21) 

which can be integrated 

ep( x, p ) = e x p [ - X f o ° ~ W ( E ) ( 1 -  e-PE) d E ] .  (22) 

From this formula we see that a splitting of the cross section in a sum leads to a 
product of Laplace transformed distribution functions. The final distribution func- 
tion will thus consist of a convolution of the distribution functions pertaining to the 
different parts of the cross section. 

Landau solved the kinetic equation for the Coulomb cross section 

w ( E ) -  x E 2 (23) 

(strictly speaking, eq. (23) is the Thomson formula for Rutherford scattering in a 
Coulomb field). However, the average energy loss diverges for this cross section, and 
a non-zero minimum energy transfer e' is introduced, so that the average energy loss 
for the Landau distribution equals the Bethe value. The Landau result is the 
universal function 

1 °2  fL(X' A) = ~- 2rr-----ifo-. e x p [ u l n u + X u ] d u ,  (24) 

with the parameter ~ given as 

1 
)~= ~ [ A -  ~(ln(~/e') + 1 -  C)] ,  (25) 
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where C = 0.577 is Euler's constant. The minimum energy transfer is given by 

In e '=  ln( I2/2mcZflZy 2 ) + fiE, (26) 

ignoring the density effect. This gives an unphysically low value for e' (e.g. for Si: 
e ' - 0 .05  eV for f13' = 1); however, for Ex< << ~ << Emax the Landau function is a 
good approximation to the actual distribution. The minimum energy transfer merely 
determines the position along the energy axis of the Landau function and has no 
effect on the shape of the distribution function. 

Although x << 1 for the projectile-target combinations investigated experimentally 
in the present work, the second condition for the validity of the Landau approach, 

>> E K is not fulfilled in our case. For Si, E~ - 2 keV and ~ = 17.81 [keV/mm] 
x / f l  2, which means that X / f l  2 >> 0.1 mm. 

Since the appearance of the Landau result, different authors [7-9] have tried to 
take the binding effects into account by expansion of the e -pE term in eq. (22). The 
distribution function can then be written as the Landau function convoluted with 
functions, depending on the higher moments of the energy loss of the difference 
between the actual and the Coulomb cross section. However, these authors only 
retained the first non-trivial term, corresponding to the second moment of the 
energy loss which is only a slight improvement to the Landau approach [10], due to 
the poor convergence of the expansion. This distribution function, which is the 
Landau function convoluted with a gaussian, has been much used in the interpreta- 
tion of experiments (for Si, see ref. [11]), letting the width of the gaussian, which 
actually is given by the second moment of the energy loss, be a free parameter. 

Finally, before turning to the model used in comparisons with experimental data 
in this work, other approaches should be mentioned. Allison and Cobb [3] also 
started from eq. (2), but a dielectric function extracted from photoabsorption data 
was used. This approach is, however, only applicable for dilute matter. A Monte 
Carlo technique was used in refs. [12] and [13] taking into account binding effects. A 
convolution technique developed by Bichsel [14] has recently been used in compari- 
son with uncalibrated energy-loss data for 5 GeV/c pions passing through a - 20 
/~m thick Si detector [15]. Recently, Lindhard [16] presented an approximation 
procedure for finding the distribution function. This procedure also allows inclusion 
of binding effects. 

2.3. THE CROSS SECTION MODEL 

We shall now describe the model used in comparison with the obtained experi- 
mental results. Talman [17] used a similar approach to obtain an analytical 
expression for the distribution function, although without density effect. We start 
from eq. (9) by interpreting he0 as the energy transfer in a collision between the 
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Fig. 1. Collision cross section as function of energy transfer for our model (full-drawn), the Rutherford 
cross section (dashed) and the cross section from ref. [9] (dotted). 

incident particle and the target atoms. We thus get the collision probability as 

2mc2/3272Eo, l 2 ] 
1 1 - E 0 ,  ) In + - - - / 3 2  w(e) = - E .7-a(E h212 2 
X n LOn E L  "+ y 09p 

1 
+ - Y~ ~ , H (  E - E o , ) / E  2 , (27) 

X n 

with ~, = F,~ and l given by eq. (12). H( ) denotes the Heaviside function. The 
~-function term describes resonance excitations whereas the truncated I / E  2 term is 
due to Coulomb excitations. This cross section is compared to the Rutherford cross 
section and the cross section by Hall [9] obtained from photoabsorption data, in 
fig. 1. The model cross section evidently avoids the unphysical minimum energy 
transfer used in the Landau theory, and also binding effects, clearly reflected in the 
cross section by Hall are to some extent taken into account. 

By introducing the average numbers of resonance collisions m r and Coulomb-type 
collisions m c for each shell, eq. (27) gives 

[ 2mc2/323~2Eon l 2 
~" I n  + - -  

~n 
mcn = Eo n 

/3 2 (28) 

(29) 



690 J.F. Bak et a L /  Landau distributions 

TABLE 1 
In the table is given the number of resonance collisions (mr,), the number of Coulomb-type 

collisions (m c,  ), the effective binding energy (E0,), the oscillator strength (F,) and the 
corresponding value for ~ = F,~, for the K, L and the M-shell in 0.1 mm Si 

n K L M 

m r .  1.04 57.7 330 
inc, 0.063 4.22 29.9 

Eo, (eV) 4033 241 17 
2 8 4 

F. I--4 I'-4 I-4 
~n (keV) 0.254 1.02 0.509 

TABLE 2 
AS table 1, but for the K, L, M and N-shell in 0.4 mm Ge 

n K L M N 

m r,, 0.806 24.3 481 1011 
rnc, 0.050 1.75 41.8 111.8 

E0, (ev) 17920 2056 194 16.1 
2 8 18 4 

F~ 3~ 3--2 3-2 3~ 
~, (keV) 0.900 3.60 8.10 1.80 

For fly >> o~./~0p, l 2 = f12y2@, and 

in 2mc2Eon 
I n - -  fl't >> ~0./O:p. (30) turn = Non h ojp2 2 , 

In tables 1 and 2 are given mr. and mcn for 0.1 mm Si and 0.4 mm Ge, 
respectively, for fl./>> ~0./~p. It is to be noted, that m r is around a factor of 10 
larger than m c. With the above definition of mr. and inc .  the collision probability 
is given by 

w ( E ) = - - [ E m r n ~ ( E - E o n ) W m c n E o n H ( E - E o n ) / E  2 . (31) 
x [ .  

Talman [17] showed by using Laplace transforms, that the distribution function 
corresponding to the above cross section can be given analytically, but the evalua- 
tion of his expression is difficult when x is small. 

Now the cross section is split into the resonant and the Coulomb-part, and then 
again into one part for shells with few collisions and a part for shells with many 
collisions. 
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With the cross section from eq. (31) the Laplace-transformed distribution func- 
tion is given by 

oo 1 -- e -pE ] 
cp(x, p)  = exp[-mr(1 - e- 'e°)lexp -mcE°f'eo ~E-i dE ]. (32) 

The shell-index n has here been omitted. Expanding the exponential in the 
exponent, for the resonance excitations we get: 

~p,(x, A) = e -m, • e-pkeom~/k!. (33) 
k~O 

Performing the inverse Laplace transformation, the distribution function for the 
resonance collisions is given by 

e - m r m k  
f r ( X  ' A )  = E _ _  r ~ ( a  -- k E o )  ' 

k=0 k! 
(34) 

which is nothing other than the Poisson distribution function. When mr<< 1, 
f ( x ,  A) ---- 8(A), SO that the shells with m r << 1 practically do not participate in the 
formation of the distribution function through their resonance collisions. For the 
Coulomb-type collisions we have 

( f ; :  l - e ' e  ) ~c(x,p)=exp -mcEo 77 de (35) 

a n d  

1 

:;2o ( :2 < - ) °exp pA + mcE o e pE 1)E-2dE dp,  : ~ (  = - -  

2~ri - .  
(36) 

which, introducing t = pE o gives 

1 1 f+ioo+o [ [ a t  
- - j  explmc [ f c (x ,  A)= Eo 2~ri -ie~+o k Eomc 

where E2(t ) is the exponential integral. When m c << 1: 

f c ( x , A ) = e - m c [ 8 ( A ) +  

1+ EE(t)] ) dt,  (37) 

mcEoH( A - Eo) ] 
A2 ] . (38) 

For a large number of Coulomb-type collisions, m c >> 1, the distribution function 
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for these collisions, not surprisingly, is given by the Landau function (24) with 
2~ = a / ~  - (ln(~/Eo) + 1 - C). For arbitrary m c the following approximation will 

be used 

Eo ,Eo 
f c ( x ' A ) = e - " c S ( A ) + ( 1 - e - m c )  --~Jo fL(X'A') 

] 
d a '  +fL(X,  A)] H(A - E0).  

(39) 

It is seen that this expression is correct in the limits m c << 1 and m c >> 1, and that 
it is normalized. Also for intermediate values of mc, eq. (39) is a good approxima- 
tion to eq. (37). 

To summarize: The distribution function for the Coulomb-type collisions from 
the shells with m c >__ 10 is a Landau function with parameters given as 

= E ~,,  X = ~ - -  In + I - C  , l n I =  E F, l n E0 , .  (40) 
n n 

m c n  > 1 0  m f .  >_ 1 0  

For shells with m r >_ 10, the Poisson distribution, eq. (34), is replaced by a gaussian, 

1 
- - e  -(za-af)2/2°~ (41) fr(X, a )  = 2V -#or 

where ~r  = rnrEo and o r = mfm-TE o. Thus the distribution function for the resonance 
collisions from shells with m r > 10 is given by (41), with 

-At = E rnr.Eo., 02= E mr.EL" (42) 
n n 

mrn ~ 10 turn > i 0  

For shells with rn r or m c < 10 the distribution function has been calculated from 
(34) or (39) directly. Finally the resonance and the Coulomb-type contributions are 
convoluted, to give the final distribution function. 

2.4. MODEL CALCULATIONS 

We shall now, before showing calculated distributions, discuss qualitatively the 
results of the above model. The width of the Landau distribution is independent of 
the binding energies, E0,, being given simply as 4.02~. In the same way, the 
Coulomb contribution to the width from shells with many Coulomb-type collisions 
is independent of the binding energies of the electrons and proportional to their 
number. When m c is small a width cannot be ascribed to the distributution 
function for the Coulomb collisions. For the resonance collisions, the width of the 
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Fig. 2. Distribution functions for 2 GeV/c pions traversing 20, 40, 80, 160, 320 and 640/~m Si (upper 
part) and Ge (lower part). The Landau function is shown for comparison. The distribution functions are 

shown as function of the Landau parameter X. 

distribution is proportional to the binding energy, o r = m~-~E0, when m r > 1. For 
m r < 1, the resonance collisions lead to a redistribution in the energy-loss function. 
Since o r (3£ ~"  and ~ cc x, it is the resonance collisions from inner shells which, in 
spite of their small number, for thin targets lead to broadening of the distribution 
function, as compared to the Landau distribution. 

The Landau function and the distribution function from the above model for 2 
G e V / c  pions from the above model traversing 20, 40, 80, 160, 320 and 640 # m  Si 
and Ge are shown in fig. 2. The choice of the used excitation energies will be 
discussed later. It is seen that the present model converges towards the Landau 
function for large thicknesses. The distribution broadens for decreasing thickness 
due to the decreasing number of resonance collisions. When t u r k -  1, shoulders 
appear  on the high-energy side of the distribution, corresponding to 1, 2 . . . .  K-shell 
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Fig. 3. Distribution functions for 2 GeV/c  e, ¢r and p penetrating 40/~m Si. The Landau function is 
shown for comparison. The distribution functions are shown as function of the Landau parameter A. 

excitations. This happens between 40 and 80 #m in Si and between 160 and 320/~m 
in Ge. At the same time, the most probable energy loss shifts to a lower value, since 
the K-sheU electrons no longer contribute to the most probable energy loss. For 
mrK<<l ,  the K-shell electrons also do not contribute to the FWHM of the 
distribution. In the case of Ge, mrL -- 1 for 20 /zm and the Poisson character of the 
distribution function for the L-shell resonance collisions becomes visible. The 
shoulder on e.g. the 20 and 40 ~tm Si spectrum is not to be expected as marked in 
experimental spectra, since it is a result of the &function representation of the 
atomic binding, cf. fig. 1. 

The fiT-dependence of the distribution function is weak for/37 > 1, although the 
density effect becomes effective at different "/-values for the different shells. The 
number of resonance collisions saturates at f l ' / -  Eo,/h~o p (cf. eq. (30), which for Si 
gives/37 - 60, 5 and 1 for the K, L and M-shell, respectively. In fig. 3 is shown the 
distribution function for 2 G e V / c  electrons, pions and protons on 40/~m Si. The 
increasing number of K-shell resonance excitations with ` / is  clearly visible. 

Finally, in figs. 4 and 5 are shown the most probable energy loss and the width of 
the distribution for 2 GeV/c  pions as function of thickness in the case of Si and Ge. 
For  large thicknesses the most probable energy loss is slightly above the Landau 
value. At ~ 100/~m Si and x - 300/zm Ge the most probable energy loss decreases 
faster with decreasing thickness than the Landau value due to the "switching-off" of 
the K-shell excitations. For much smaller thicknesses the most probable energy loss 
is independent of the K-shell excitations. The width of the distributions increase 
with decreasing target thickness until a maximum is reached at x ~ 50/Lm Si and 
x -  150 /~m Ge. For much smaller thicknesses the K-shell electrons no longer 
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Fig. 4. Most probable energy loss (Ap/x) and width (FWHM/~) of the energy-loss distribution for 2 
GeV/c  pions as function of thickness Si. The dashed curve is the Landau result. 

contribute to the FWHM of the distribution, and the width increases again now due 
to the resonance excitations of L-shell electrons. 

The excitation energies characterizing the solid are taken from measurements of 
plasma frequencies and ionization potentials, refs. [18-22]. For the M-shell in Si 
and the N-shell in Ge, ~0, is taken as the plasma frequency. The other excitation 
energies are taken as ionization potentials scaled to give the correct mean ionization 
potentials [22], I = 169 eV in Si and I - -  340 eV in Ge. In this way, the excitation 
energies given in tables 1 and 2 are obtained. 

2.5. MEAN, RESTRICTED AND MOST PROBABLE ENERGY LOSSES 

In subsect. 2.1, the mean, or average, ionization energy loss of relativistic charged 
particles passing through thin foils was calculated. This average energy loss is what 
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is measured in classical experiments, as the difference in the projectile energy before 
and after the passage of the foil, averaged over many particles. For high-energy 
particles, this approach is not feasible, due to the very small energy loss less than 
100 keV as compared to projectile energies of several GeV. A different approach is 
used in this work, namely to measure the energy deposited in the target. This can be 
done when the target is a fully depleted semiconductor detector. What is now the 
difference between the measured deposited energy and the calculated average energy 
loss? Energy escapes the foil (see also subsect. 3.2) mainly as kinetic energy of 
8-rays. If the maximum energy transfer Ema x in the Bethe formula is replaced by a 
constant E 0 < Em~x, we get the formula for the restricted energy loss, restricted in 
the sense that energy transfers are restricted to E < E 0 

{ 2mc2fl2Y2E° Eo fl2-~}. (43) 
A r e s t  r "= ~ I n  12 2mc272 
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The energy loss, to be compared to measured deposited average energy losses, 
should then be the above restricted energy loss, E 0 being given as the kinetic energy 
of an electron of range of the order of the target thickness [23]. For 1 mm Si, we get 
E 0 - 5 0 0  keV. The exact choice of E 0 is not very important, due to the weak 
dependence of the above formula on E 0. Also this restricted energy loss is not easily 
comparable to measurements, due to the high-energy tail in the energy-loss distribu- 
tion. An experimentally well defined quantity is the most probable energy loss. To 
calculate the most probable energy loss in principle it is necessary to know the 
energy-loss distribution function. For the Landau function, the maximum occurs 
at [24] 

=-0.225, ~ =  A - ~  In 12 + I - C  a ~, (44) 
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Fig. 6. Most probable (full-drawn), restricted (dotted) and average (dashed) energy loss in Si and Ge as 
function of fl~,. For details, see the text. 
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giving for the most probable energy loss 

[1 2m¢2f1272~ _ f12_ ] 
A p = f  n 12 +0.198 ~ . (45) 

In fig. 6 is shown the most probable energy loss, eq. (45), with (lower full-drawn 
curve) and without (upper full-drawn curve) density effect. Also shown is the 
restricted energy loss, eq. (43), dotted and the average energy loss, eq. (10), dashed, 
both including density effect. The curves have been calculated for 0.1 mm Si 
and 0.4 mm Ge. 

Escape of 8-rays will also lead to changes in the energy-loss distribution, mainly 
at A >> E o. However, the probability of producing a g-ray with sufficient energy to 
escape the detector is at the one percent level, decreasing for decreasing target 
thickness and the g-rays is not expected to give any appreciable broadening [9]. 

3. Experimental considerations 

3.1. GENERAL LAYOUT 

The experiment was performed at the beam-line t7 at the CERN Proton Synchro- 
tron. Secondary particles, mostly e÷/e  -, ~r+/~r -, K + / K  - and p/~,  produced in the 
production target can be transported by the beam-line elements at momenta 
between 0.5 and 10 GeV/c. The divergence of the beam was typically 2 mrad and 
the beam size 10-20 mm, largest at the small momenta. The intensity could be 
varied between 103 and 106 particles per burst (450 ms). The momentum bite used 
was typically 0.2%. 

The last part of the beam line and the experimental area is shown in fig. 7. The 
useful part of the beam was defined by the scintillators, SC. The anticoincidence 
counter, SC, vetoed particles hitting the target at distances larger than 6 mm from 
the center. The position of the particles was registered by the drift chambers, 
DC1-DC2-DC3, to an accuracy of - 0.1 mm. The particle-type was identified with 
the Cerenkov counters, C1 and C2, and the lead glass array, LG. A vacuum system 

SC DC-1 S--C DC-2 SC DC-3 ~;-1 ~-2 LG 

I ,  ,n, 
" I I U I  II I m  

bend TARGET 

Fig. 7. Schematic drawing of the experimental setup. DC designates drift chamber, SC: scintillator, C: 
t~erenkov counter and LG: lead-glass array. 
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(pressure < 10 -5 torr) surrounded the beam from DC1 throughout DC2. The beam 
was cleaned by the 10 mrad dipole magnet, so that radiation, mainly photons, 
created upstream, did not hit the target. 

Due to the very small content of kaons (less than 1%), it was decided only to use 
three kinds of particles, namely protons, pions, and electrons. This decision was also 
made in view of the limited space in the beam line. Two Cerenkov counters were 
used, one tuned for electron/muon separation and one for pion/kaon separation. 
In this way, the - 1% muons from pion decay were included with the 30-50% pions 
and the - 1% kaons with the 10-50% protons. In this way, the errors introduced by 
the muon and the kaon content of the beam, was less than other, mainly statistical, 
uncertainties, due to the relatively slow variation of the energy loss with 3'. At 2 
GeV/c, the protons were identified by time-of-flight. The electrons were also 
identified with the lead-glass array. 

The data acquisition was done in the following way. The trigger logics selected the 
interesting events to be transferred to tape. The interesting events are events in 
the useful part of the beam, defined by the scintillation counters, giving a signal in 
the semiconductor target and which is well separated from the previous and the next 
particle in the burst. It was further required that the data taking system (computer 
and CAMAC system) was idle. 

The particle identification was done in the hardware, apart from the electron 
identification by the lead glass. So the particle identification data consisted of the 
particle identification bit-pattern plus the lead glass ADC signals. Furthermore, 
the events consisted of TDC data from the drift chambers and ADC data from the 
energy-loss detector. The arrival of the energy-loss signal relative to the beam 
particle was also recorded in a TDC. Various other signals were also recorded, either 
for each event or each burst, to check the correct performance of the experiment. A 
minicomputer, used to transfer events to tape, was also used for monitoring the 
experiment. Beam profiles, energy-loss spectra, lead-glass spectra, etc. could be 
displayed on this minicomputer. 

The drift chambers were mainly used to exclude particles hitting the edge of the 
active area of the energy-loss detectors. These particles give a reduced energy-loss 
signal since they penetrate partially depleted regions of the detector, and they 
appear in the energy-loss spectra mainly as a low-energy tail. However, a fraction of 
this tail remains, after reducing the beam size with the drift chambers, probably due 
to inefficiencies in the drift chambers (see also sect. 4). The low-energy tall is 
removed in the comparison with calculations to improve the normalization. 

3.2. ENERGY LOSS DETECTION 

The Si detectors used in the experiment were commercial EG&G ORTEC totally 
depleted surface barrier detectors. Their dimensions are given in table 3. These 
detectors have a maximum thickness variation of _+0.5/Lm and _+1.0 #m for the 
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TABLE 3 
Thickness (x),  active area (A) and resolution (o) of the Si detectors used 

x (/~m) 32.0 50.9 100.3 174.0 290 1040 

A (mm 2) 10 10 50 50 50 50 
o (keV) 0.784 0.730 2.00 3.51 3.18 3.95 

three thin and the three thick detectors, respectively. This thickness uniformity 
assures that no additional broadening of the energy-loss distribution is caused by 
thickness variations. We also present results from measurements using a 0.370 mm 
Ge detector. This detector was fabricated as described in ref. [23]. 

As we were interested in the width of the energy-loss distribution, it was necessary 
to operate the detector and the amplifier system in such a way, that the noise was 
much smaller than the width of the energy-loss distribution. It was thus necessary to 
cool the 3 thin detectors, to eliminate the noise contribution from leakage current. 
Furthermore the 2 thin detectors had a very small active area, to reduce the noise 
caused by detector capacitance. In this way resolutions (RMS value of gaussian) as 
given in table 3 were achieved. For the Ge detector a resolution of o = 3.5 keV was 
obtained. Finally i t  should be mentioned that pile-up did not lead to any observable 
deteoriation of the energy-loss spectra. 

The detectors were calibrated using a Ba-133 source emitting X- and 33-rays, and a 
precision pulser. The detectors were calibrated before and after each run, and no 
detectable drift in the calibration constants, nor in the resolution, was found. 

Calibrating detectors, used to measure energy loss of GeV particles, with ,/-rays, 
assumes that the energy required to produce an electron/hole pair, w ,  is the same 
for the two processes. This is a reasonable assumption as differences from w for fast 
electrons, protons and photons have only been found for low-energy a-particles and 
heavy nuclei [25]. Furthermore, the production of electron/hole pairs leads to 
additional broadening. An intrinsic resolution, with variance o 2 = F A  E w ,  exists due 
to the electron/hole pair statistics [26]. Here AE is the energy lost by the projectile 
and F - 0 . 1 0 ,  the Fano factor, accounts for the fact, that the formation of the 
different electron-hole pairs are strongly correlated. This intrinsic resolution is, even 
for our thinnest detector, much smaller than the electronical noise, and can thus be 
neglected. 

We shall also briefly discuss processes, different from the primary ionization 
energy-loss process, in which energy may enter or escape the target, thus making 
difficult comparisons between measured deposited energies and calculated ioniza- 
tion energy losses. A detailed evaluation of these processes has been made in ref. 
[27]. There is a large difference between the average energy loss and the average 
deposited energy loss due to escape of 8-rays. However, the most probable energy 
loss is uninfluenced by these high-energy 8-rays (see subsect. 2.5). Energy may also 
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escape the detector in the form of X-rays, photoelectrons, and Cerenkov radiation, 
and energy from transition radiation and bremsstrahlung may be absorbed. 

When K-shell vacancies are created, the emitted electron or the subsequently 
emitted X-ray of Auger electron may escape the detector. Because of the very small 
fluorescence yield and because of the short range of low-energy electrons these 
escapes have very little influence on the spectra. 

Cerenkov radiation emitted in regions of low absorption may also escape the 
detector, t~erenkov radiation is, however, mainly emitted at low frequencies, where 
the absorption is large, and the non-absorbed radiation is negligible. It should be 
mentioned here, that the energy loss due to (~erenkov radiation is included in the 
calculation presented in sect. 2. 

Transition radiation and bremsstrahlung, only emitted in substantial amounts in 
the target by electrons, may be absorbed in the target. Only the energetic part of the 
photons can influence the measurements, and for these photons the absorption 
length is much larger than the target thicknesses. 

In conclusion, what is measured as the number of liberated carriers in the target 
are closely proportional to the ionization energy loss, for not too large energy losses. 

4. Discussion of results 

4.1. ENERGY LOSS AND STRAGGLING IN Si 

Energy-loss distributions have been obtained for 2 GeV/c p, 7r + and e + on 32.0, 
50.9, 100.3, 174, 290 and 1040/tm Si and for 8 GeV/c p, ~r + and e + on 174, 290 
and 1040 /~m Si. In the negative polarity, energy-loss distributions have been 
recorded for 2 and 8 GeV/c for the 290 and the 1040/~m Si detector. We only show 
the energy-loss distributions for 2 GeV/c positive particles on the 6 Si targets in 
figs. 8-13. Also shown is the Landau distribution function (dashed) and the 
distribution function obtained from the model described in subsect. 2.3 (full-drawn). 
The Landau function is shown as a reference, to see the importance of electronic 
binding effects. The theoretical distribution functions have been convoluted with the 
resolution function, a gaussian with a width given by the resolutions quoted in table 
3. Although the width of the resolution function is smaller than the width of the 
distribution function, it leads to some broadening, especially for the 32.0 /~m 
detector. 

The general observation is that the measured distributions follow nicely the 
broadening of the model distribution function, as compared to the Landau function, 
for decreasing thickness. Also the downward shift of the most probable energy loss, 
again as compared to the Landau function, seems to be reproduced. 

To study quantitatively the agreement between measured widths and most 
probable energy losses and model predictions, in figs. 14-19 we have plotted, 
measured and calculated (including resolution) values for the most probable energy 
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Fig. 8. Experimental energy-loss distributions compared to the Landau function (dashed) and the 
distribution function from our model (full-drawn). The upper spectrum is for 2 GeV/c positrons, the 

middle for 2 GeV/c pions and the lower for 2 GeV/c protons traversing the 32.0/~m Si target. 

loss (in k e V / m m )  and for the width ( F W H M / ~ ) ,  as function of fl~/ for the 6 
different thicknesses. The measured values have been extracted by fitting a poly- 
nomial  of  order 8 to the data. Only data points with a content of more than - 25% 
of  the maximum content are used in the fit. Increasing the order of the polynomial 
does not change significantly the extracted values. 

Although the results from the model were discussed in subsect. 2.3, we shall here 
briefly comment  on the theoretical curves on figs. 14-19.  

The most  probable energy loss from the model is below the Landau value for the 
two thin detectors and above for the other, due to the separation of collisions with 
one  or more K-shell excitations from collisions with none for the thin targets. Both 
the Landau and the model most probable energy loss are proportional to f l -2 for 
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Fig. 9. As fig. 8 but for the 50.9 ffm Si target. 

fl7 -< 1, has a minimum for fly - 4 and saturate at the Fermi plateau for fly >_ 50. 
The FWHM of the Landau distribution is 4.02~, and the amount, that the width 

of the Landau distribution convoluted with the resolution function is above 4.02~, 
reflects the broadening due to the finite resolution. The decrease for fl7-< 2 in 
FWHM/~ for the Landau distribution including resolution is caused by the fl-2 
increase in the energy loss for decreasing ft. 

The width of the model distribution is larger than the Landau function, up to 
almost a factor of two for the 32.0 /~m detector. For the two thin detectors the 
FWHM/~ does not saturate until f l y -  100, due to the saturation of the K-shell 
excitations at this value of fly. For the thicker detectors, this saturation takes place 
at smaller fly-values due to the smaller contribution of the K-shell excitations to the 
width of the distribution for large thicknesses. 

We shall now discuss figs. 8-19, one thickness at a time. 
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Fig. 10. As fig. 8 but for the 100.3 ~ m  Si target. 

32.0 I~m. The shoulder on the high energy side of the model distribution is not 
reproduced in the experiment. This shoulder, involving exactly one K-shell excita- 
tion, is caused by the unphysical g-function representation of the resonance colli- 
sions in the collision cross section, cf. fig. 1. It is thus not to be expected as distinct 
in the experimental spectra. The agreement between the measured and the calcu- 
lated distribution function is clearly not very good on the low energy side, the 
experimental one being significantly above the calculated. This may, at least partly, 
be due to the low energy tail, remaining when the edge of the detector is excluded. 
The level of this tail at the point of the cut-off, is dearly visible. In conclusion, the 
measured distributions are clearly 10-15% too wide with a most probable energy 
loss - 4% too high, as compared to the model calculations. The more pronounced 
shoulder at high y-values is responsible for the better agreement between the widths 
for 2 GeV/c  e +. 
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Fig. 11. As fig. 8 but for the 174/~m Si target. 
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50.9 Izm. The one K-shell excitation shoulder is still visible in the model 
distribution function, although it is closer to the peak. Indications of a weak 
shoulder in the experimental spectra seem to exist, but the distinct shoulder in the 
model distribution is not seen, for good reasons as explained above. The width and 
the most probable energy loss are in reasonable good agreement with calculated 
values (within a couple of percent), especially considering the distinct shoulder on 
the model distribution. However, the experimental spectrum is above the theoretical 
distribution function on the low energy side and below on the high energy side. This 
is, at least partly, due to the low energy tail on the experimental spectrum and the 
shoulder on the theoretical distribution function. 

100.3 t~m. At this thickness the one K-shell excitation shoulder is not visible, 
since it is very close to the peak of the distribution. The agreement between the 
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Fig. 12. As fig. 8 but for the 290 ~m Si target. 

experimental spectrum and the model calculation is almost perfect, but a small 
discrepancy between the heights of the distributions exists for 2 G e V / c  e ÷. The low 
energy tail is very small due to the more favourable ratio between the area and the 
circumference of the detector, as compared to the two previous cases. The two thin 
detectors have an active area of 10 mm 2 whereas the present and the three thicker 
detectors have an area of 50 mm 2. The experimental distributions are 5-7% 
narrower than the model calculation. The most probable energy loss for 2 G e V / c  
~r ÷ and p agrees perfectly with the model calculations but for 2 G e V / c  e + the 
experimental value is 3% too low. 

174  l~rn. Very good agreement between experimental spectra and model calcula- 
tions exist at 2 GeV/c,  but for 8 G e V / c  pions and protons, the experimental 
spectra are - 1 0 %  narrower than the model result and the experimental most 
probable energy loss is 3-4% lower than the theoretical value. 
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Fig. 13. As fig. 8 but for the 1040 #m Si target. 

290 #m .  Here all 2 and 8 GeV/c  experimental spectra in both polarities are 
shifted downwards by - 4%, but the experimental widths agree well with the widths 
of the model distribution function. This discrepancy is suspected to be due to a 
depletion layer - 4% thinner than the actual thickness, but it has not been possible 
to confirm or disprove this suspicion. Finally, notice the very good agreement 
between width and most probable energy loss for particles of positive and negative 
charge to better than one percent. 

1040 #m.  The agreement between experimental spectra and the model calcula- 
tions is very good, and the small difference between the model distribution function 
and the Landau function, most clearly visible in the height of the distributions, is 
well-produced, in the sense that the experimental spectra agree much better with the 
model distribution function than with the Landau function. Again results for 
positive and negative particles agree perfectly. 
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Let us finally make a comment on other measurements known to the authors. A 
few scattered results exist on the energy-loss distribution for relativistic particles in 
solid, particularly silicon, targets. Except for the results in ref. [28], they are all for 
thicknesses larger than 200/~m [11, 23, 29-32] and none of these measurements are 
absolute. Either no energy calibration (e.g. with a V-source) has been performed, or 
the thickness of the active layer is unknown. These results are thus of limited value, 
and they are not easily combined to show systematic trends. 
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4.2. ENERGY LOSS AND STRAGGLING IN Ge 

The only data to be discussed for Ge is the energy loss of 8 GeV/c positrons, 
pions, and protons in a 370 /~m Ge detector. This is mainly due to the difficult 
operation and fabrication of Ge detectors. 

The experimental energy loss distributions for 8 GeV/c e +, ~r +, and p are in fig. 
20 compared to the Landau distribution (dashed) and the distribution function 
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Fig. 16. As fig. 14, but for the 100.3/~m Si target. 

calculated from the model described in subsect. 2.3. The experimental resolution is a 
negligible effect. Very good agreement exists between experiment and the model, 
both for the most probable energy loss and the width of the distribution as for the 
distribution function itself. So the additional broadening of the distribution mainly 
due to the non-negligible binding energy of the K-shell electrons in Ge is well 
reproduced in the experiment. 
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Fig. 17. As fig. 14, but for the 174 ffm Si target. 

4.3. ULTRA-RELATIVISTIC EFFECTS IN E N E R G Y  LOSS 

The Bethe-Bloch formula as described in sect. 2 needs modifications at ultra-rela- 
tivistic velocities, i.e. for 3' >> 1, such as radiative corrections, kinematic corrections, 
projectile-structure corrections etc. These corrections, however, seem to apply only 
to the average energy loss, and not to have any influence on restricted and most 
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Fig. 18. As fig. 14, but for the 290 ~m Si target. 

probable energy losses [22,33]. A reduction in the value of the Fermi plateau, as 
suggested by Tsytovitch [34], and claimed observed by Zhadanov et al. [35, 36] 
seems not to have any relevance to the restricted or the most probable energy loss 
[36, 37]. Also the measurements by Burq et al. [38] do not confirm the predictions of 
Tsytovitch. Ogle et al. [39] have observed a (7 + 2)% reduction in the most probable 
energy loss with respect to the Fermi-plateau for 7 > 3 X 104 in a 101/~m Si detector. 
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Fig. 19. As fig. 14, but for the 1040 # m  Si target. 

The authors suggest an explanation in terms of the finite detector thickness and a 
relativistic effect. 

In the present experiment no decrease or increase from the value of the Fermi 
plateau has been observed for high ,/-values. However, this is not in disagreement 
with the experiment by Ogle et al., since our largest ,/-value is 1.6 x 104 for the 174 
#m detector and 4 x 103 for the 32.0/~m detector. 
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Fig. 20, Experimental energy-loss distributions compared to the Landau function (dashed) and the 
distribution function from our model (full-drawn). Energy-loss distributions are shown for 8 GeV/c 

positions (upper part), pions (middle part) and protons (lower part). 

5. Concluding remarks 

The y-dependence of the energy loss for relativistic particle impact on solids has 
been studied in detail. The behaviour of the most probable energy loss as function 
of fl,g agrees in general well with calculations. In particular, a Fermi plateau 
constant to within - 1% has been observed over the -/-range covered C -  1-104) .  
Also  the observed decrease in the most probable energy loss as function of target 
thickness is in good agreement with model calculations. 

This work represents the first systematic study of energy-loss distributions in 
solids over a wide range of thicknesses and -/-values. Broadening of the distribution 
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function relative to the Landau function, is observed for decreasing thickness. This 
broadening is caused by the increasing influence of the resonance collisions on the 
straggling. The measured energy-loss spectra are generally in good agreement with 
calculated distribution functions, where the electronical binding effects have been 
included in the single collision cross section. At the very thinnest targets, dis- 
crepancies exist, partly because of experimental problems, partly due to the &func- 
tion representation of the resonance collisions in the cross section. Calculations 
based on a more realistic energy-loss cross section and better measurements, where 
particles hitting the edge of the detector are entirely excluded, are needed to 
investigate the significance of the discrepancies. Finally, the confirmation of the 
results by Ogle et al. [39] awaits energy loss measurements on foils thinner than 100 
#m for ,/-values larger than 104. 
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