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Abstract

Searches for new phenomena will be one of the primary goals of the LHC experiments once data
taking commences. In particular, low mass supersymmetry might be found with modest amounts of
integrated luminosity. We review the prospects for the discovery of mSUGRA with the early CMS
data in final states containing a charged lepton, multiple jets, and missing transverse energy. Three
types of analyses are envisioned: a traditional “cut based” search, a multivariate analysis technique
utilizing boosted decision trees, and a model independent search for new physics. We compare the
performance of the three analyses for several mSUGRA benchmark points, and discuss their benefits
and drawbacks.



1 Introduction
Supersymmetry (SUSY) [1] predicts the existence of a new particle for each Standard Model (SM) particle, differ-
ing by half a unit in spin but otherwise sharing the same quantum numbers. In a supergravity scenario, the gravitino
will acquire mass through the spontaneous breaking of local SUSY. The SUSY-breaking is then communicated to
the so called observable sector so that, in particular, the gluino acquires its mass [2]. For the study presented here,
we use a scenario of minimal supergravity (mSUGRA) with conserved R-parity. This leaves five model parame-
ters: the universal soft breaking mass parameter for all scalars at the unification scale, m0; the common gaugino
mass, m1/2; a universal trilinear coupling, A0; the ratio of the vacuum expectation values of the two neutral Higgs
fields, tan β; and the sign of the higgsino mixing mass parameter, sgn(µ).

From current searches at the Fermilab Tevatron pp̄ collider we know that the masses of gluinos and squarks have
to be above ∼ 310 GeV and ∼ 380 GeV, respectively [3]. The sensitivity beyond these limits at CMS has been
studied in great detail [4]. It has been found that one of the most promising signatures for early discoveries at
the LHC comprises a single high transverse momentum isolated lepton (electron or muon), several jets, and large
missing transverse energy 6ET . In the present note, we compare the strength of three different approaches to such
an analysis: first, the traditional way of tuning a series of one-dimensional selection criteria on a simulation of SM
backgrounds and signal. Second, we investigate the gains from exploiting multidimensional correlations by using
multivariate analysis techniques, in our example boosted decision trees (BDT). Finally, we present the sensitivity
of a model independent search for new physics to the specific case of mSUGRA considered here.

The three types of analysis presented differ vastly in their sensitivity to detector understanding and simulation of
signals and backgrounds. At one extreme, BDT’s make full use of practically the entire event information both
for signal and background; at the other end, the model independent search does not rely at all on signal simula-
tion. The obviously different sensitivity to systematic uncertainties and physics biases of the different approaches
should allow us ultimately to make optimal use of the data and to avoid false discoveries, while keeping maximal
sensitivity to new physics.

Several characteristic mSUGRA parameter sets are commonly used at CMS to benchmark the sensitivity of differ-
ent search channels (see Fig. 1). In this note, we study in particular several “low mass” (LM) points, which - if
realized in nature - are expected to be discovered at the LHC with a relative low amount of integrated luminosity:

m0 m1/2 tan β sgn(µ) A0 σ (LO) [pb] σ (NLO) [pb]
LM1 60 250 10 + 0 45.9 61.1
LM2 185 350 35 + 0 7.80 10.5
LM4 210 285 10 + 0 20.5 27.7

The total cross sections including all SUSY channels have been calculated with Prospino 2 [5] using CTEQ6L1
and CTEQ6M PDF’s [6] for the leading order and next-to-leading order cross sections, respectively. The point
LM1 is close to the Tevatron exclusion region. Point LM2 has a relatively large value of tanβ, leading to a larger
number of tau leptons in the final state. For point LM4, the decay of the χ̃0

2 into on-shell Z’s is characteristic. For
all three points, squark and gluino masses are below ∼ 700 GeV, leading to relatively large total cross sections at
14 TeV center of mass energy. Also, q̃g̃ production is dominant, contributing about half of the total cross section.

The results are mostly presented for an assumed integrated luminosity of 1 fb−1 at a pp center of mass energy of
14 TeV. The Monte Carlo samples are from CSA07 [7], and use the 100 pb−1 scenario for detector alignment and
calibration. The bulk of the CSA07 MC production corresponds to an integrated luminosity of 1 fb−1, thus MC
statistics are not negligible.

2 Common Aspects
2.1 Monte Carlo samples
The different mSUGRA LM samples are generated using the SoftSusy [8] program to calculate the mass spectrum,
and the SUSY-Hit [9] package to calculate the decays. Finally the event generator Pythia [10] is used for the
simulation of the parton shower. For each LM point defined above 100k events have been produced.

The different SM backgrounds are split in three “soups”. The soup “Chowder” contains the W+jets, Z+jets and
tt̄+jets backgrounds, and uses the Alpgen [11] generator (together with Pythia for parton showering), which is more
appropriate (than e.g. Pythia) to simulate the high transverse momentum jets accompanying W and Z bosons or
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Figure 1: Plane of mSUGRA parameters m0 and m1/2, with the CMS benchmark points LMx (low mass) and HMx (high
mass) indicated [4].

top quarks. The lepton enriched QCD, bottomonia and charmonia events, simulated by Pythia, are contained in
the “Stew” soup. Finally, the “Gumbo” soup contains the QCD and photons+jets backgrounds, and minimum bias
events. In the cut based and BDT analyses, where we focus on the µ + 6ET + jets final states, the analyses are
performed directly on the optimized HLT-muon samples [12]. The three soups in the muon stream contain more
than five million events, while the total number of generated events is more than 100 million in the CSA07 exercise.
The MUSiC analysis ran both on electron and muon streams.

All events are simulated utilizing the full CMS detector simulation and event reconstruction framework CMSSW
[13]. Using grid tools, the event selection, data reduction and analysis has been performed within the CMSSW
framework in version 1.6.7. We use private code running locally on the federated Tier-2 Aachen/DESY for the last
steps of the analyses.

3 Cut Based Analysis
3.1 Online selection
The online selection is critical for data taking under LHC conditions. The trigger consists of two steps, the
Level 1 (L1) followed by the HLT (High Level Trigger) [14]. The muon stream samples used here are an ad-
mixture of different simulated trigger conditions. The trigger menu for such a HLT muon stream is, as described in
[12]: HLT1MuonIso, HLT2MuonIso, HLT2MuonNonIso, HLT2MuonSameSign, HLTXMuonsJets, HLTXElec-
tronMuon and HLTXElectronMuonRelaxed. We have chosen to focus on the subset containing the single and
di-muon triggers, with and without isolation requirement. They correspond to the following technical trigger bits:

• HLT1MuonIso, single isolated µ with pT threshold at 11 GeV

• HLT2MuonIso, double isolated µ, both pT to greater than 3 GeV

• HLT2MuonNonIso, double relaxed µ, both pT to greater than 3 GeV
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(a) Transverse momentum pT of the leading muon.
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(b) Number of muons per event.

Figure 2: Transverse momentum and number of muons for the expected signal and the dominant SM backgrounds.

This specific trigger menu should be robust, even at the startup of the machine. These muon triggers present rates
around 20 Hz for the HLT1MuonIso and 12 Hz for the HLT2MuonIso. The efficiency of such a trigger menu, after
all cuts applied that will be described in the following paragraphs, is 93% for the LM1 point.

3.2 Offline selection
In the present analyses we are focusing on final states containing at least one muon, large missing transverse
energy and several high transverse momentum jets. The muon signature is chosen due to its robustness against
instrumental backgrounds and the Aachen expertise from detector construction and commissioning [15].

Lepton identification The muon object provides the trigger for the topology under study. Additional offline
criteria are applied in order to refine the quality of the selected muons. We require at least 12 hits in the tracker and
the muon system together, a normalized χ2/NDOF lower than 3 and |η| < 2.1. The two first conditions ensure that
the muon is properly reconstructed, the latter restricts the acceptance to muons visible by the trigger. Additionally
the sum of the transverse momenta of all tracks in a ∆R = 0.31) cone around the muon (excluding the muon track
itself) has to be less than 6 GeV, mainly to reject non-isolated muons from heavy flavor decays. In Figure 2(a)
the pT distribution of all muons fulfilling these criteria in events passing the trigger is shown; only muons with
pT ≥ 20 GeV are selected in order to match or exceed the expected trigger thresholds. Figure 2(b) shows the
number of muons after all of the above cuts.

Preselection In R-parity conserving supersymmetry two neutralinos, which have a mass of the order of 100 GeV
for the investigated LM points, will escape detection. Thus we require at least a missing transverse energy of
100 GeV at the preselection level.
To ensure properly reconstructed jets and a reasonably precise jet energy scale, only jets with |η| ≤ 2.5 are
considered. The iterative cone algorithm with a cone size of 0.5 is used and L2-L3 jet energy scale corrections are
applied. A minimum of 10% of the jet energy is required to be reconstructed in the hadron calorimeter, in order to
reject electrons and photons from the collection of jets.
The gluinos dominantly decay into a squark-quark-pair. Due to the relative small mass difference between gluino
and squark, we expect an average jet arising from this decay to have a momentum of the order of 100 GeV. The
squark is expected to decay into a quark and another sparticle, resulting in a hard jet of the order of a few hundred
GeV, as the mass splitting between squarks and lighter sparticles is rather large. In total the dominant q̃¯̃q, q̃g̃ or g̃g̃
production should therefore lead to two hard and several softer jets. Consequently, we require at least three jets
with pT ≥ 80 GeV (see Figure 3).

In the QCD multijet background or other processes without highly energetic invisible particles, missing transverse
energy is expected to be caused by misreconstructed jets or muons. In order to suppress this background we restrict
the angle between 6ET and jets. The same motivation holds for poorly reconstructed muons or highly boosted W-
bosons which may lead to a muon parallel to “fake” 6ET .

1) ∆R =
√

∆φ2 + ∆η2
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(a) Transverse momentum pT of all jets.
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(b) Number of jets per event.

Figure 3: Jet transverse momentum and number of jets per event for signal and background events.
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Figure 4: Angular difference between the leading muon and the transverse missing energy as well as the angular difference
between the transverse energy and the three leading jets.

Optimization strategy During the following steps the optimization is performed on LM1, but the resulting cuts
are applied to the other LM points. It turns out that there is no gain in optimization of the cuts with respect to a
certain LM point.

To get a quick and reasonable estimate of the expected significance, we calculate NS/σB , with the error on the
background σB as the quadratic sum of the systematic uncertainties (see section 3.3) and the Poisson uncer-
tainty σP =

√
NB . Using this estimator, we optimize (in this order) the angular differences |∆φ(µ, 6ET )| and

|∆φ(6ET , jet1,2,3)|. Another reoptimization is performed on each of these cuts while keeping the other three fixed,
starting over each time a significant change occurred (see Figure 4).
In the next step we, in a way like above, look at the jet momenta p1stjet

T , p2ndjet
T and the missing transverse energy

6ET (see Figure 5 and 6).
Finally, each of the above cuts is re-evaluated after the application of all other cuts.
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Figure 5: Transverse momentum of two leading jets.
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Figure 6: Missing transverse energy.

With this procedure the following cuts are determined:

• |∆φ(µ, 6ET )| ≥ 0.8

• |∆φ(6ET , jet1,2,3)| ≥ 0.6

• p1stjet
T ≥ 200 GeV

• p2ndjet
T ≥ 150 GeV

• 6ET ≥ 250 GeV

3.3 Systematic uncertainties
The following systematic uncertainties are considered. It should be noted that the objective of the present analysis is
a comparison of the sensitivities of different analysis techniques. A complete discussion of systematic uncertainties
and their derivation based on data is beyond the scope of this note.

Luminosity 5%, fully correlated for all samples.

Cross sections 10% (including uncertainties of parton density functions), assumed to be fully correlated for sam-
ples of one type (for example all jet multiplicity bins of the tt̄ samples).

Jet energy scale To estimate the effect of the uncertainty of the jet energy, the energy of all jets is shifted by a
certain percentage. The energy change of the jets with pT > 10 GeV is then propagated to the 6ET . The
variation is performed twice, once by ±5% and once by ±10% of the jet energy. Thus, one obtains four
deviations of the number of events passing all cuts: ∆N±5% and ∆N±10%. With these deviations we
calculate the mean uncertainty of the number of events:

∆NJES = 1/4 · (|∆N+5%| + |∆N−5%| + |∆N+10%|/2 + |∆N−10%|/2). (1)
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Sample # Events @ 1 fb−1 σstat σsys σPoisson @ 1 fb−1

NL UL
W+jets 8.3 8.6 1.7 2.1 –
Z+jets 0.095 1.2 1.0 0.28 –

tt̄ 9.2 9.2 1.9 5.0 –
Diboson 0.25 0.44 0.19 0.097 –

Drell-Yan 0.013 0.058 0.043 0.014 –
QCD 0.0 9.8 6.0 2.2 –

Background sum 18 29 6.6 9.3 –
LM1 316 – 13 64 33
LM2 97 – 3.1 16 14
LM4 203 – 7.5 39 24

Table 1: Numbers of events after all cuts with uncertainties scaled to an integrated luminosity of 1 fb−1. The column labeled
UL contains numbers of events after implementing an upper limit in samples with zero selected events, as described in the text.

Depending on the dataset this uncertainty is between 5% and 50%. Datasets without any events passing the
cuts are assigned a default 20% uncertainty. These uncertainties are assumed to be correlated for all samples.

In addition a statistical uncertainty w ·
√

N is assigned to each event, depending on the event weight w and the
total number of events N of the simulated dataset.

3.4 Results
The results include the following Standard Model background samples:

• single boson production W and Z

• diboson production WW , WZ and ZZ

• top quark pair production tt̄

• QCD multijets with p̂T > 300 GeV (transverse momentum of the hard interaction in its rest frame)

Samples which contain zero events after the application of all cuts are conservatively set to a Poisson 68% upper
limit of 1.15 events before scaling them to an integrated luminosity of 1 fb−1. The estimation of an upper limit
is most important for the QCD multijet background, since most other samples have been simulated with statistics
corresponding to an integrated luminosity of 1 fb−1.

For the W+0 jets MC sample, where insufficient MC statistics is available and no events are selected, we do not
apply an upper limit: In the W+1 jet sample with sufficient statistics, no events are selected, and we can therefore
conclude that the W+0 jet background is negligible.

As one can see in Table 2, there are no QCD events left after the angular correlation cuts. The following three
hard cuts on jets and 6ET are expected to further supress this background by several orders of magnitude. Thus
we assume QCD background to deliver a negligible contribution to the total background. Nevertheless we conser-
vatively apply an upper limit on all QCD samples with p̂T ≥ 300 GeV: In theses samples the sum of transverse
momenta

∑
pT of the selected objects is of the order of the p̂T of the hard interaction. Ultimately, one would

estimate the QCD background from real data, as e.g. outlined in the MUSiC analysis section.

The selected numbers of events are shown in Table 1. The dominant backgrounds remaining after the optimized
selection are W+jets and tt̄. The QCD background contributes mainly due to the lack of MC statistics. The
expected statistical significance of the SUSY signals based on Poisson probabilities2) (thus neglecting systematic
uncertainties and MC statistics) are also given in Table 1, and indicate the discovery reach with 1 fb−1 of integrated
luminosity.

2) PPoisson =
∫

∞

NS

Poisson(NB)
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Background sample Signal sample
Cut W+ 0 jets W+jets Z+jets tt̄ Diboson DY QCD All BG LM1 LM2 LM4

NoCuts 5.07e + 07 1.48e + 07 6.58e + 06 8.28e + 05 1.08e + 05 1.75e + 03 8.03e + 13 8.03e + 13 6.11e + 04 1.05e + 04 2.77e + 04
HLT 6.67e + 06 2.22e + 06 1.44e + 06 1.24e + 05 1.07e + 04 1.65e + 03 2.21e + 08 1.05e + 07 8.88e + 03 1.33e + 03 3.33e + 03

Efficiency 13% 15% 22% 15% 9.9% 94% 0.0% 0.0% 15% 13% 12%
µ acceptance 5.39e + 06 1.85e + 06 1.19e + 06 1.04e + 05 9.20e + 03 1.63e + 03 4.17e + 06 8.56e + 06 6.08e + 03 9.77e + 02 2.89e + 03

Efficiency 81% 84% 83% 84% 86% 99% 1.9% 82% 69% 73% 87%
µ identification 5.33e + 06 1.82e + 06 1.18e + 06 9.86e + 04 9.04e + 03 1.62e + 03 3.17e + 06 8.44e + 06 5.42e + 03 8.44e + 02 2.61e + 03

Efficiency 99% 98% 99% 95% 98% 99% 76% 99% 89% 86% 91%
3 Jets, pT ≥ 80 GeV 0.00e + 00 4.13e + 03 9.27e + 02 1.01e + 04 5.13e + 01 2.74e + 00 1.28e + 03 1.53e + 04 2.09e + 03 4.42e + 02 1.39e + 03

Efficiency 0.0% 0.23% 0.078% 10% 0.57% 0.17% 0.04% 0.18% 39% 52% 53%
6ET ≥ 100 GeV 0.00e + 00 1.36e + 03 9.19e + 01 3.43e + 03 1.79e + 01 3.90e− 01 1.13e + 02 4.93e + 03 1.91e + 03 4.18e + 02 1.24e + 03

Efficiency 0.0% 33% 9.9% 34% 35% 14% 8.8% 32% 91% 94% 89%
Angular correlations 0.00e + 00 2.47e + 02 8.43e + 00 8.62e + 02 3.56e + 00 1.43e− 01 0.00e + 00 1.12e + 03 7.76e + 02 1.80e + 02 5.04e + 02

Efficiency 0.0% 18% 9.2% 25% 20% 37% 0.0% 23% 41% 43% 41%
1st Jet pT ≥ 200 GeV 0.00e + 00 1.31e + 02 5.02e + 00 3.10e + 02 1.74e + 00 1.22e− 01 0.00e + 00 4.47e + 02 6.24e + 02 1.57e + 02 4.21e + 02

Efficiency 0.0% 53% 60% 36% 49% 85% 0.0% 40% 80% 88% 84%
2nd Jet pT ≥ 150 GeV 0.00e + 00 9.42e + 01 4.26e + 00 2.04e + 02 9.11e− 01 6.78e− 02 0.00e + 00 3.03e + 02 4.85e + 02 1.29e + 02 3.26e + 02

Efficiency 0.0% 72% 85% 66% 52% 56% 0.0% 68% 78% 82% 77%
6ET ≥ 250 GeV 0.00e + 00 8.33e + 00 9.49e− 02 9.16e + 00 2.48e− 01 1.25e− 02 0.00e + 00 1.79e + 01 3.16e + 02 9.73e + 01 2.03e + 02

Efficiency 0.0% 8.8% 2.2% 4.5% 27% 18% 0.0% 5.9% 65% 75% 62%

Table 2: Expected number of events at 1 fb−1 after each cut. Efficiencies are relative to the number of events passing the previous cut.
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Figure 7: ln(Q) distribution of the background-only hypothesis(b) and the signal+background hypothesis (s+ b), respectively.
The separation of both distributions determines the discrimination power between the two hypotheses. An ln(Q) for data (d)
close to the background only curve states an agreement with the background-only hypothesis. On the opposite a large ln(Q)
for data (d) close to the s + b curve would point to some new physics not consistent with the background only hypothesis.

3.5 Statistical interpretation
In oder to determine the expected significance of an observation, a modified frequentist approach [16, 17] is
applied. If the expected number of signal events s and the number of background events b are known without any
systematic uncertainties, one can calculate, for a measured number of events d, the log-likelihood-ratio ln(Q).
Here Q is the probability of the signal+background hypothesis to yield the measured number of events, divided by
the probability of the background-only hypothesis, assuming Poisson distributions for both hypotheses:

Q =
(s + b)d · e−(s+b)

bd · e−b
(2)

The higher the value of ln(Q), the more signal-like the measured data are.

In case of systematic uncertainties on the expected numbers of events, this approach has to be extended: Pseudo-
experiments are performed, in which the expected number of background events b and signal+background events
s + b are varied according to their statistical and systematic uncertainties, while taking correlations into account.
A bunch of pseudo-experiments is performed assuming d to be background like, i.e. d = Poisson(b) resulting
in the expected background-only ln(Q) distribution (see b-curve in Figure 7). In addition pseudo-experiments are
generated in which d is diced according to expected number of signal+background events, i.e. d = Poisson(s+b)
(see s+ b-curve in Figure 7). The integral of both distribution is normalized to one. Finally, these two distributions
have to be compared to the ln(Q) value of the measured events dmeas. Data are considered incompatible with the
background-only hypothesis, if the ln(Q) value of the measured events dmeas is considerably larger than the ln(Q)
values of the background only distribution, hence the probability to find a background only pseudo-experiment
with a larger ln(Q) is sufficiently small. This probability, commonly denoted as 1 − CLB , corresponds to the
fraction of the b-curve in Figure. 7 at the right side of the d-line. A probability of smaller than 2.8 · 10−7, which
corresponds to a Gaussian 5σ single-sided deviation, is commonly declared as a discovery. Since this is a MC only
study without any measured data, the expected discovery potential for SUSY can be determined assuming that the
data correspond to the median ln(Q) of the signal plus background curve (see dPseudo-line in Figure. 7).
In order to test the sensitivity for a 5σ deviation from the background only hypothesis, this approach would need
at least 109 pseudo-experiments to have sufficient statistics in the region of interest. This can easily take days of
computing time. Therefore we fit a Gaussian to the tail of the background-only distribution and extrapolate it to
regions with very low probability close to the signal plus background distribution (see thick line in Figure 7). This
extrapolation is proved to be prone to statistical fluctuations and tend to overestimate the significance, thus values
significantly larger than 5σ have to be taken with a grain of salt. The calculated probability CLB being a p-value
can be translated via a one-sided Gaussian into standard deviations.

Table 3 summarizes the expected significances for the three investigated LM points. Both LM1 and LM4 are in
the discovery reach within the first 1 fb−1 or earlier. It can be seen that the increase of the significance with the
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(b) Correlations lost

Figure 8: Distribution of a toy signal (red) and background (black) with and without usable correlations. Trivial cuts are shown
in the usable case.

addition of more data does not follow the expectation of a search dominated purely by statistical uncertainties.
This is due to the impact of systematic uncertainties, but also due to the limited MC statistics. The benchmark
point LM2 requires a larger amount of integrated luminosity for discovery, reduced systematic uncertainties, or
alternative search channels (see e.g. section 5).

LM-Point 10 pb−1 40 pb−1 100 pb−1 1 fb−1

LM1 3.3 4.9 7.1 10
LM2 1.9 2.6 3.2 3.9
LM4 2.6 3.9 4.8 7

Table 3: Modified Frequentist significances expected for the different SUSY benchmark points and different amounts of
integrated luminosity.

4 Multivariate Analysis Technique: Boosted Decision Trees
Analyses based on one dimensional cuts, like the one presented in the previous section, are straightforward, robust,
and easily enjoy acceptance in the community. However, they have their limitations. In a situation like in Fig-
ure 8(a) the shown cuts are quite easy to determine. In Figure 8(b) the variables are correlated differently for signal
and background separated, but this correlation is lost for signal and background together and can not be exploited
using the chosen variables with one dimensional cuts. In this artificial example it is rather simple to define two new
variables honoring the correlations, effectively rotating Figure 8(b) by 45◦. Confronted with real world problems,
this will quickly become excessively complicated, as there is usually a rather high number of possible variables,
resulting in many combinations to be tested for correlations. The situation is even worse if there are correlations
between three or more variables. In addition all correlations would have to be reinvestigated for different model
parameters.

Illustrating an exemplary cut based analysis as a decision tree (see Figure 9(a)), one can see an event being classified
as signal, if and only if it passes all cuts. Mathematically speaking, in the space defined by all variables, exactly
one region is selected, whose borders are perpendicular to the variable axes. Ideally this region is located and sized
such that the separation of signal and background is maximized. However, depending on the physics involved, the
best region may be irregularly shaped and being separated in numerous unconnected parts. One way to get near
this best region is to extend the simple decision tree of Figure 9(a) to a full fledged one like shown in Figure 9(b).
The leaves of this tree can then be classified as either signal or background, thus selecting more than one region.
These regions are still rectangular, but can approximate any shape, if they are small and numerous enough.
In this analysis the ROOT [18] based multivariate analysis framework TMVA [19] in version 3.8.14 is used.

4.1 Training
The number of possible trees with all combinations of cut variables and values is basically unlimited, so it is
obviously impossible to search all trees to find the best separating one. Thus the so called growing of the tree is
done in a rather straightforward way: Using all events, the variable and the corresponding cut value resulting in the
best separation is determined. The events are then split into two subgroups, one containing all events which pass
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Figure 9: One dimensional cuts represented as a decision tree.

this cut and the second containing all events which do not pass. For each of these two subgroups the procedure is
repeated, resulting in now four subgroups. This splitting is then repeated recursively until the number of events in
a subgroup drops under a certain number3) N0, then the splitting of this subgroup is stopped.

This is done for two reasons:

• Avoid overtraining: If the splitting is performed until the events in each leaf are either signal or background,
the separation is perfect on the training sample, but on any other sample it is most likely deteriorated.

• Manageable tree size: A sample of Ntraining events will lead to a tree with at most 2Ntraining splitting nodes.

In TMVA N0 is set to
max(20, Ntraining/(N2

variables/10)) (3)

which leads to a maximum size of 10N 2
variables splitting nodes and a sufficient chance for every variable to be used

for splitting.

The best separating variable and its value is determined by trying each variable at NCuts = 20 values, equidistant
between the minimum and maximum of this variable in all events in this node, and calculating the weighted average
(weighted with the number of events in the nodes) of a separation index for both daughter nodes. Here the Gini
index p · (1 − p) with purity p = NS/(NS + NB) is used, which is at its maximum for perfectly mixed samples
(p = 0.5) and drops to zero for samples which consist of signal or background only. Then the variable-value pair
with the smallest separation index is used.

4.2 Boosting
A single decision tree grown like above is a rather weak classifier, as it is quite likely affected by statistical
fluctuations of the sample. Furthermore it yields a binary yes-no decision whether it considers an event to be signal
or background, and gives no information how signal- or background-like the event might be.

One way to overcome these drawbacks is boosting, which can be applied to most MVA classifiers. A common
boosting algorithm is AdaBoost (adaptive boosting), where the weights of events misclassified by one decision tree
are multiplied by a boost weight α, before an additional tree is grown using the modified sample. The boost weight
is determined from the misclassification rate εerr of the previous tree:

α =
1 − εerr

εerr
(4)

3) Actually the splitting is not performed if the number of events in one daughter node drops below this number.
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Thus events misclassified by an otherwise well performing tree have the highest impact during the growing of the
next tree. The final response of this forest of decision trees is then calculated via

response =
∑

ln(αi)hi (5)

with the individual responses hi of each tree, which is −1 for background and 1 for signal. The combined response
will then be somewhere between −1 and 1, showing the signal-likeness the forest assigns to this event.

4.3 Pruning
A tree will quite likely contain splitting nodes, especially near its leaves, which are statistically insignificant. These
nodes will increase the size of the tree without a significant performance gain and may lead to overtraining, as their
cut values are just caused by statistical fluctuations. So they can be removed, if their gain in performance is beneath
a certain threshold, depending on the number of events left. It is recommendable to first grow a tree to its maximum
size and then cut it recursively back, starting at the leaves, because a cut may seem insignificant on its own, but
lead to improved performance in subsequent cuts4).

Experience so far for the present application shows no performance increase on independent test samples, thus we
avoided the additional work for tuning the pruning threshold. But this has to be further investigated.

4.4 Workflow
Two partially different approaches are followed:

Approach 1 Utilizing 6ET , the highest pT (leading) muon, and the momentum pT of the three leading jets.

Approach 2 Utilizing 6ET , the leading muon pT , the leading jet pT , and the number of jets and muons.

In both cases the following cleaning cuts are used:

Muons

• pT ≥ 20 GeV
• ∑

ptracks
T ≤ 6 GeV in a ∆R = 0.3 cone

• χ2/NDOF ≤ 3

• NHits ≥ 12

• |η| ≤ 2.1

Jets

• pT ≥ 50 GeV
• |η| ≤ 2.5

• At least 10% hadronic energy

In both approaches the following attributes are used to train the BDTs:

Muons

• transverse momentum pT

• Pseudorapidity |η|
• Isolation:

∑
ptracks

T ,
∑

Ecalo
T , NTracks (∆R ≤ 0.3 cone)

• Calorimeter compatibility

Jets
4) This will e.g. be the case in a situation like in Figure 8(b).
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• transverse energy ET

• Pseudorapidity |η|

6ET

• missing transverse energy 6ET

• scalar sum of all transverse energy
∑ |ET |

Muon and jet

• invariant mass
• |∆φ|

Muon and 6ET , jet and 6ET

• |∆φ|

If no pruning is performed, the BDTs are most likely overtrained on the set of events used for training, resulting
in a unphysical high separation power. Thus the events used for training and validation must be statistically
independent. Consequently we separate the simulated events in two sets: One used for training, one for validation.

On the first third of the MC samples one set of BDTs is trained for each of the three LM points and both approaches,
resulting in set of six BDTs. The last two thirds of the MC samples are then used to determine the minimal response,
which yields the best significance (see Figure 10), and to calculate the significance. The optimal cut on the BDT
response is determined by optimizing NS/σB as described in section 3.2. In analogy to the cut-based analysis the
significance is determined using the modified frequentist approach including systematic uncertainties as explained
in section 3.5.

4.5 Results
As in the previous cut based analysis we include the following Standard Model background samples:

• single boson production W and Z,

• diboson production (WW , ZZ, WZ)

• top quark pair production tt̄ and

• QCD multijets with p̂T > 300 GeV (transverse momentum of the hard interaction in its rest frame).

Samples with zero events passing all cuts are forced to contain 1.15 events (Poisson 68% upper limit) before
normalization to an integrated luminosity of 1 fb−1 (see section 3 for details). The systematic uncertainties are
taken from section 3.3, except for the jet energy scale uncertainty, which is determined again. For the results of
the six BDTs see Tables 4 to 9. All six BDTs, for the two approaches and trained on the three different SUSY
benchmark points, give similar numbers for background and signal expectation, and consequently for the expected
statistical signficance. Similar to the cut based analysis, the dominant backgrounds remaining are tt̄ and W+jets.

4.6 Interpretation
Using the same approach as in Section 3.5, we obtain the expected significances shown in Tables 10 to 15. There is
a modest improvement compared to the cut based analysis in terms of the expected significances, and correspond-
ingly in the amount of required luminosity for a discovery. As there is more improvement for smaller luminosities,
the selection performance of the BDTs is better than of the conventional analysis, but they are more affected by
systematic uncertainties. This is expected, as the systematic effects are not taken into account during the training,
only during the optimization of the minimal response. With the current set of variables and training parameters,
there are only small differences between the BDTs trained specifically for a certain LM point.
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(b) Approach 1; Trained on LM2
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(c) Approach 1; Trained on LM4
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(d) Approach 2; Trained on LM1
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(e) Approach 2; Trained on LM2
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(f) Approach 2; Trained on LM4

Figure 10: BDT response for signal and background for 1 fb−1.

Sample # Events @ 1 fb−1 σstat σsys σPoisson @ 1 fb−1

NL UL
W+jets 4.6 5.0 2.3 0.97 –
Z+jets 0.03 1.7 1.5 0.39 –

tt̄ 29 29 4.4 8.4 –
Diboson 0.25 0.4 0.22 0.16 –

Drell-Yan 0.004 0.072 0.064 0.016 –
QCD 0.0 15 8.9 3.3 –

Background sum 34 51 10 13 –
LM1 465 – 19 70 38
LM2 135 – 4.5 17 15
LM4 263 – 10 41 25

Table 4: Number of events in approach 1, trained on LM1, scaled to 1 fb−1.
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Sample # Events @ 1 fb−1 σstat σsys σPoisson @ 1 fb−1

NL UL
W+jets 13 13 4.2 4.6 –
Z+jets 0.14 1.8 1.5 0.42 –

tt̄ 29 29 4.3 11 –
Diboson 0.12 0.42 0.23 0.2 –

Drell-Yan 0.0 0.073 0.064 0.016 –
QCD 0.83 15 8.9 3.4 –

Background sum 43 59 11 19 –
LM1 547 – 20 93 38
LM2 172 – 5.0 25 17
LM4 362 – 12 61 31

Table 5: Number of events in approach 1, trained on LM2, scaled to 1 fb−1.

Sample # Events @ 1 fb−1 σstat σsys σPoisson @ 1 fb−1

NL UL
W+jets 7.4 7.8 3.2 3.1 –
Z+jets 0.061 1.8 1.5 0.45 –

tt̄ 37 37 4.9 13 –
Diboson 0.25 0.54 0.26 0.2 –

Drell-Yan 0.001 0.073 0.064 0.017 –
QCD 0.61 15 8.9 3.6 –

Background sum 45 62 11 20 –
LM1 572 – 21 95 38
LM2 169 – 5.0 23 17
LM4 396 – 13 64 33

Table 6: Number of events in approach 1, trained on LM4, scaled to 1 fb−1.

Sample # Events @ 1 fb−1 σstat σsys σPoisson @ 1 fb−1

NL UL
W+jets 12 12 3.6 5.9 –
Z+jets 1.8 1.8 1.6 0.89 –

tt̄ 41 41 5.1 12 –
Diboson 0.5 0.65 0.28 0.22 –

Drell-Yan 0.062 0.063 0.059 0.013 –
QCD 0.83 15 8.9 3.3 –

Background sum 56 70 11 21 –
LM1 572 – 21 89 38
LM2 141 – 4.6 17 14
LM4 305 – 11 44 26

Table 7: Number of events in approach 2, trained on LM1, scaled to 1 fb−1.
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Sample # Events @ 1 fb−1 σstat σsys σPoisson @ 1 fb−1

NL UL
W+jets 14 14 3.5 2.6 –
Z+jets 0.06 1.8 1.5 0.42 –

tt̄ 37 37 4.9 13 –
Diboson 0.37 0.52 0.26 0.14 –

Drell-Yan 0.012 0.08 0.064 0.02 –
QCD 0.0 15 8.9 3.3 –

Background sum 52 69 11 18 –
LM1 566 – 21 101 38
LM2 181 – 5.2 25 17
LM4 391 – 13 66 31

Table 8: Number of events in approach 2, trained on LM2, scaled to 1 fb−1.

Sample # Events @ 1 fb−1 σstat σsys σPoisson @ 1 fb−1

NL UL
W+jets 12 12 3.9 3.8 –
Z+jets 0.24 1.9 1.5 0.5 –

tt̄ 43 43 5.3 15 –
Diboson 0.37 0.52 0.26 0.2 –

Drell-Yan 0.007 0.075 0.064 0.021 –
QCD 0.83 15 8.9 3.5 –

Background sum 57 73 11 22 –
LM1 509 – 20 92 38
LM2 153 – 4.8 20 14
LM4 390 – 13 61 31

Table 9: Number of events in approach 2, trained on LM4, scaled to 1 fb−1.

Sample 10 pb−1 40 pb−1 100 pb−1 1 fb−1

LM1 3.7 6.5 8.5 11
LM2 2.0 2.8 3.3 4.0
LM4 2.7 4.1 5.4 6.6

Table 10: Expected significance of approach 1, trained on LM1

Sample 10 pb−1 40 pb−1 100 pb−1 1 fb−1

LM1 3.7 6.0 7.5 8.5
LM2 2.1 2.8 3.3 3.7
LM4 3.1 4.7 5.4 6.1

Table 11: Expected significance of approach 1, trained on LM2

Sample 10 pb−1 40 pb−1 100 pb−1 1 fb−1

LM1 4 6.3 7.7 9.1
LM2 2.1 2.8 3.2 3.5
LM4 3.2 4.9 5.8 6.6

Table 12: Expected significance of approach 1, trained on LM4

Sample 10‘pb−1 40 pb−1 100 pb−1 1 fb−1

LM1 3.9 6.6 8.2 10
LM2 1.9 2.5 2.9 3.4
LM4 2.7 3.8 5.0 5.8

Table 13: Expected significance of approach 2, trained on LM1
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Sample 10‘pb−1 40 pb−1 100 pb−1 1 fb−1

LM1 3.8 6.6 8.0 9.8
LM2 2.1 3.0 3.4 4.1
LM4 3.1 5.3 6.3 7.6

Table 14: Expected significance of approach 2, trained on LM2

Sample 10‘pb−1 40 pb−1 100 pb−1 1 fb−1

LM1 3.5 5.5 6.4 7.4
LM2 2.0 2.5 2.9 3.2
LM4 3.1 4.4 5.4 6.1

Table 15: Expected significance of approach 2, trained on LM4
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5 MUSiC – A Model Unspecific Search for New Physics in CMS
In the context of a generic search for New Physics in early LHC data a special algorithm called “MUSiC” has
been developed. A dedicated note documenting all the details of this analysis Ansatz is currently in preparation.
In the scope of this note we will only highlight the basic features and the algorithm. We focus on the comparison
with the previous analysis strategies and discuss the sensitivity to selected SUSY signals. More models beyond the
Standard Model will be discussed in a forthcoming MUSiC note.

5.1 The concept of model independent searches
Model independent searches aim to cover a large fraction of data, systematically scanning them for deviations from
the Standard Model. Therefore the selection cuts are not optimized for any expected new physics signal; however,
the quality of the measurement is ensured by selecting well measured and well understood physics objects such as
isolated high-pT leptons. Similar strategies have already been applied successfully at accelerator experiments, see
e.g. [20–23].
The motivation for such an analysis strategy is evident: The LHC will enter unkown territory and there are multiple
reasons why new physics is expected to appear. Unlike in experiments of the past there is an almost infinite number
of predictions from theory of how exactly these new physics models will look like. Following the saying “expect
the unexpected”, a model independent search tries to cover a wide range of the phase space and is not limited to
a specific topology. In this way it should be sensitive to surprises with spectacular final states such as mini black
holes, give a consistent picture of the various channels where a SUSY signal could contribute, or quickly discover
discrepancies caused by detector effects or effects not properly accounted for in the Monte Carlo simulation.
However, such an ambitious strategy also has its drawbacks: For some signals it could be less sensitive than a
targeted analysis. In addition, since a variety of final states is looked at, one has to rely more on the background
predictions made by Monte Carlo generators. While some SM backgrounds may be reasonably well predicted in
particular thanks to the availability of Monte Carlo programs based on matrix element calculations like ALPGEN
or MC@NLO, there are others where this is likely not to be the case. As one obvious example, the QCD multijet
background will have to be estimated from the data in such a generic search.

In order to have a well defined trigger stream and in order to reduce the QCD backgound we restrict the analyzed
phase space by requiring:

Topology cut: Events with >= 1 lepton (electron or muon)

All events which fulfill this requirement are then classified into so called event classes. Each event class is defined
by the amount of physics objects in the event, e.g. 1µ 3jet. We consider exclusive and inclusive event classes,
where in the exclusive case the exact number of particles is required, e.g. 1µ 0e 0γ 2jet 6ET . The inclusive classes
which require only a minimal number of particles, e.g. 1µ 3jet + X , so at least one muon and 3 jets, are denoted
with a suffix +X. Given the complex decay chains of e.g. SUSY events such inclusive classes might be useful.
We consider the following physics objects measured by the CMS detector:

Physics objects: Muons (µ), electrons (e), photons (γ), hadronic jets (jet) and missing transverse energy (6ET )

Given the complexity of the analysis, the strategy will be to focus on well measured and well understood objects
(high pT , central η), even if this implies some loss in efficiency. Selection cuts are desired to remain as simple as
possible. We note that similar stategies are useful for any start-up physics study.

5.2 Technical setup
Standard CMS software is used in order to process the simulated samples and to reconstruct the physics objects,
using version CMSSW 1 6 8 [13]. Various official reconstruction tools are used and will be discussed below in the
context of selection cuts. All samples are generated with the full detector simulation and originate from the MC
production during the Computing, Software and Analysis Challenge 2008. The complete soups Chowder, Stew
and Gumbo have been processed, using the susyElectron skim (logical “OR” of various electron HLT triggers) and
the susyMuon skim (“OR” of various muon HLT triggers).

In addition, various CSA07 “signal” samples have been processed in order to supplement the Soup-SM-cocktail:

• ALPGEN W + N jets with N = 0, .., 5 (300 < pT (W ) < 1600 GeV)
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• ALPGEN Z + N jets with N = 0, .., 5 (300 < pT (Z) < 1600 GeV)

• PYTHIA Z → 2l (l = e, µ) with Mll > 200 GeV (ALPGEN samples include a cut on Mll < 200 GeV)

• PYTHIA WW , WZ and ZZ samples

• SOFTSUSY LM1, LM2 and LM4 signal samples

For the dominant SUSY backgrounds, tt̄, W+jets and Z+jets, a constant k-factor has been applied consistently
for all jet-bins and pT -bins in order to correct the LO cross section to the NLO prediction (obtained from MCFM
[24]). For SUSY LM1, LM2 and LM4 the Prospino 2 NLO predictions are used.

5.3 Selection criteria
Muons
Global muons [25] are selected, i.e. a central track matched to the measurements in the muon system. In addition to
this the standard muon isolation tool is used. The following selection cuts are applied to ensure high reconstruction
efficiency and low fake probability:

• pT (µ) > 30 GeV

• |η(µ)| < 2.1

• Ntracker hits > 8

• Rtrack isolation =

∑
pT of tracks in 0.3 cone

pT (µ) < 0.1

• χ2/dof
Nvalid hits

< 1

The chosen η-acceptance is given by the instrumentation of the L1 single muon trigger. The cuts on number of hits
and χ2 of the muon track are designed to suppress mis-measured muon candidates which tend to have unphysically
high pT .

Electrons
So called Gaussian-Sum-Filter-Pixel-Matched electrons [26] are selected, i.e. an inner track matched to a super-
cluster measured by the electromagnetic calorimeter (ECAL). In addition to this the standard EGamma Isolation
tool and the official “cut based” electron identification criteria are used. The following selection cuts are applied
in order to ensure high reconstruction efficiencies and low misidentification rates:

• pT (e) > 30 GeV

• |η(e)| < 2.5

• Electron ID classification tight

• Rtrack isolation =

∑
pT of tracks in 0.3 cone

pT (e) < 0.1

The cut based ID tool uses the variables E/p, Ehad/Etot, cluster shape σηη and the distances between track and
supercluster in η and φ. Different cuts are used for different electron classifications, also distinguishing between
endcap and barrel detectors.

Photons
Corrected photons [27] are selected, based on a supercluster measured in the ECAL. In addition to this the standard
isolation tool of the e/γ-group and an official tool to identify photon conversions are used. Since no standardized
photon ID tool existed at the time the analysis was designed, a private likelihood algorithm was used in order to
identify photons. Separately for endcap and barrel regions, this likelihood discriminator uses energy ratios (r9,
r19, e3x3/e5x5 and Ehad/Etot) and shape variables (σηη , σφφ and σηφ). The decision if a photon is “good” or not
(needed as input to LLH) is taken matching generated photons to reconstructed ones. The following selection cuts
are applied in order to ensure high reconstruction efficiency and low misidentification rates:

19



• pT (γ) > 30 GeV

• |η(γ)| < 2.5

• veto on a matched pixel seed

• select only unconverted photons

• Ehad/Etot < 0.2

• Rtrack isolation =

∑
pT of tracks in 0.3 cone

pT (γ) < 0.1

• likelihood > 0.1

These cuts are chosen to ensure that only electromagnetic objects in the calorimeter without any tracks matched
to them are considered, therefore photon which convert in the tracker are excluded, and thus the selection is
orthogonal to the electrons.

Jets
The “iterative cone” jet algorithm[28] with a radius of R =

√
∆φ2 + ∆η2 = 0.5 is used. L2-L3 jet energy scale

corrections are applied in order to have a proper estimate of the jet at particle level. The following selection cuts
are applied in order to ensure high reconstruction efficiency and a reasonable understanding of the jet energy scale:

• pT (jet) > 60 GeV

• η(jet) < 2.5

• Ehad/Etot > 0.05

A certain amount of hadronic energy is required in order to seperate jets from electromagnetic objects in the
calorimeter such as electrons or photons.

Missing tranverse energy
Since any error of the measurement of the physics objects discussed above propagates into the determination of
6ET , a relatively high threshold of

• 6ET > 100 GeV

is used. Standard corrections [29] are applied to the 6ET object, accounting for jet energy scale corrections of the
jets in the event, and subtracting muon momenta from the calorimeter based 6ET estimate.

Within the scope of this note we do not present detailed control plots and efficiency curves for all the physics
objects selected. As an example we only want to present the muon reconstruction efficiency after all selection
criteria have been applied (Figure 11). The turn-on curve has been created using a SUSY LM4 sample, matching
generated muons to reconstructed global muons with a ∆R < 0.2 criterion. An overall reconstruction efficiency
of more than 95% is found, almost flat in pT .

5.4 Suppression of instrumental backgrounds
While it is clear that with the arrival of first data various “cleaning” steps will be needed to select “good” runs
without detector problems, also on the level of physics object reconstruction additional criteria are needed in order
to minimize instrumental and background from “fakes”. This cleaning mainly refers to the removal of duplicate
objects and the ambiguous interpretation of objects in the detector, e.g. a supercluster can be an electron as well as
a photon candidate.
The cleaning steps are carried out in the following sequence:

• Muon candidates which are closer than ∆R < 0.2 to each other are cleaned, keeping only the one measured
best (smaller χ2/dof ). This is designed to remove ghost muons and other sources of duplicate muons.
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• Electron candidates which are closer than ∆R < 0.2 to each other, and which share either the inner track or
the supercluster seed are cleaned, keeping only the more energetic one.

• Photon candidates which are closer than ∆R < 0.2 to each other and which share the supercluster seed are
cleaned, keeping only the more energetic one. Also photon candidates closer than ∆R < 0.2 to an already
selected electron are removed if the photon has the same supercluster seed as the electron. This should
remove the ambiguity imposed by the fact that all superclusters can be interpreted as electrons as well as
photons. Thus well measured electrons receive a higher priority than photons.

• Jet candidates closer than ∆R < 0.2 to an already selected electron or photon are removed to avoid an
overlap of those collections.

5.5 High Level Trigger
The choice of the trigger menu used in this analysis is driven mainly by the requirement to combine triggers with
prescale factors 1 (or at least identical prescales) and HLT triggers which are expected to be “standard” at the LHC
start-up and therefore commonly used and well understood.
An “OR” of various single lepton and di-lepton HLT-triggers [14] is used; they can be combined into a muon
stream on the one hand and an electron stream on the other:

• single muon (with isolation) OR di-muon HLT (with and without isolation)
[HLT1MuonIso ‖ CandHLT2MuonIso ‖ HLT2MuonNonIso]

• single electron OR di-electron HLT (both with and without isolation)
[HLT1Electron ‖ HLT2Electron ‖ HLT1ElectronRelaxed ‖ HLT2ElectronRelaxed ‖ HLT1EMVeryHighEt ‖
HLT1EMHighEt]

After all selection criteria have been applied, the muon and electron stream are merged into a single dataset,
avoiding double counting in events where both electron and muon triggers have fired.

Again we present one exemplary efficiency plot. Figure 11 shows the HLT trigger efficiency using an “OR” of
all used muon trigger bits. Events from the SUSY LM4 sample have been used, and the trigger efficiency has
been determined after all selection cuts have been applied, including the topology requirement of at least a single
reconstructed muon. The efficiency curve as a function of η shows an overall level of well above 80%; the dips
clearly reflect the wheel structure of CMS. Note that unfortunately the single muon trigger without isolation has
not been included in the SUSY-HLT-skim used for the CSA07 samples. Including this trigger in future skims
would increase the overall efficiency to about 90%.
In addition to specific turn-on curves also a single number for the global HLT trigger efficiency using an “OR” of
all the triggers mentioned above is of interest. We obtain, again using the SUSY LM4 sample and with respect to
selected events (statistical errors only):

• Muon Stream: εHLT = 82 ± 0.4%

• Electron Stream: εHLT = 88 ± 0.3%

5.6 The search algorithm
At this point of the analysis, the events have been processed and physics objects satisfying the criteria mentioned
above are identified. The composition of the event, i.e. the number of muons, jets etc. then determines to which
event class it is assigned. At the present time two distributions are considered for each event class, thus limiting
the number of distributions looked at and focusing on distributions which seem to be promising for spotting new
physics:

• Scalar sum of the transverse momentum
∑

pT of all physics objects.
For example for the class 1µ 2jet 6ET + X one calculates

∑
pT = pT (µ) + pT (jet1) + pT (jet2) + 6ET .

• Invariant mass Minv of all physics objects. For classes with 6ET the transverse mass MT is investigated.
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Figure 11: Left: Muon-reconstruction efficiency as a function of pT (gen) using the SUSY LM4 sample. Right: HLT trigger
efficiency using “OR” of all used muon triggers as a function of η(rec) using the LM4 sample, with respect to selected events.

These two distributions are input to the MUSiC algorithm (similar to the H1 analysis [21]) which scans them sys-
tematically for deviations, comparing the Standard Model expectation (Monte Carlo prediction) with the measured
data.

First part
In order to do so, each connected bin region is considered within the distributions, i.e. single bins (bin 10 or bin
200) as well as broad regions (bin 3 − 100 or bin 300 − 305). We do not consider it meaningful to combine
unconnected bins, e.g. combine bin 20 and bin 100 and bin 314 into one region.

For each connected region, a counting experiment is performed, adding up the various Monte Carlo contributions
(NSM ) and comparing this sum to the amount of measured data (Ndata). In addition to these two numbers also the
uncertainty of the prediction (δ(NSM )) is used, i.e. the systematic and statistical uncertainties of simulated events
contributing to this specific region. Then a Poisson probability is computed, determining how likely the prediction
fluctuates to the number seen in the data. The systematic errors, taking correlations into account, are included
using a convolution with a Gaussian function:

p =





∞∑

i=Ndata

A ·
∞∫

0

db exp
(−(b − NSM )2

2(δNSM )2

)
· e−b bi

i!
if Ndata ≥ NSM

Ndata∑

i=0

A ·
∞∫

0

db exp
(−(b − NSM )2

2(δNSM )2

)
· e−b bi

i!
if Ndata < NSM

, (6)

where A ensures the normalization. From all the possible combinations of connected bins, the region with the
smallest p-value (pdata

min ) is chosen. This is the place in the distribution where the biggest discrepancy between data
and Monte Carlo prediction is found. It is called the Region of Interest.
This simple but effective approach is sensitive to an excess of data as well as a deficit; it can detect large single bin
fluctuations as well as possible signals spread over a large part of the distribution. A bin width of 50 GeV for both
distributions (

∑
pT and Minv ) is chosen in order to absorb detector resolution effects.

Second part
It is important to understand that the statistical estimator p alone is not sufficient to claim any signal. A statistical
penalty factor has to be included to account for the large number of regions investigated. This is done in a second
step of the algorithm, determining the event class significance (per distribution) of the deviation found in the first
step:
Toy Monte Carlo experiments are performed, assuming the background-only hypothesis. Therefore hypothetical
data histograms (HDH) are created numerous times by varying the Monte Carlo prediction for each bin according
to its statistical and systematic uncertainty. These hypothetical data are then fed again into the first step of the
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algorithm and compared to the Monte Carlo mean (results in pSM
min). Again all possible connected regions are

examined, not only the Region of Interest from step 1. The event class significance of the deviation is defined as:

P̃ =
number of HDH with pSM

min ≤ pdata
min

total number of HDH . (7)

The value of P̃ is the fraction of toy experiments where a deviation even bigger than the one observed in the
data is found. Thus performing these pseudo-experiments one jitters the Standard Model expectations and tests
for signal-like fluctuations of the Standard Model. The P̃ can directly be translated into standard deviations (see
Figure 17) and is comparable to the widely used CLb.

Sensitivity study with simulated events
Since the LHC has not started yet it is clear that we have no Ndata to compare with the Monte Carlo prediction.
Still we can pick exemplary models beyond SM and test the sensitivity of MUSiC with them. Instead of only
producing pseudo-data for the backgound-only hypothesis in step 2 we can also create toy data as input to step 1
assuming signal + background, i.e. add the signal distributions on top of the SM ones. In this way we can repeat
several pseudo-CMS experiments and determine the expected event class significance of a possible signal present
in the data. Figure 12 illustrates this procedure, using the event class 1e 5jet + X as an example: The left curve
represents the pseudo-experiments where signal plus background are assumed. With data this would correspond to
a single line. The right curve on the other hand displays the multiple repetition of the SM expectation including its
errors, thus this represents step 2 of the algorithm. The p and P̃ values stated in the plots refer to the median of the
left curve and then integrating the red curve beyond this median pmin. The interpretation of the two curves is clear:
In the case that they are well separated, P̃ will be quite low and discovery is easy, as shown in the left plot where
no systematic errors are assumed. But if we include systematic uncertainties in the algorithm, the two hypotheses
move close to each other and less than a 3σ deviation (≈ 10−3) remains. This also underlines the importance of
implementing systematic uncertainties into MUSiC.
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Figure 12: Signal plus background and background-only hypotheses for an LM4 event class, on the left without systematic
uncertainties and on the right with all uncertainties included. The striking difference between both plots shows the importance
of systematic uncertainties.

5.7 Systematic uncertainties
As mentioned in the previous section, it is crucial to implement correct systematic uncertainty estimates in the
algorithm in order to distinguish a true signal from a “fake” deviation caused by an unanticipated detector effect or
an incorrect theoretical estimation of the Standard Model expectation. The following systematic uncertainties are
assumed and included in MUSiC; their magnitude is estimated in the context of 1fb−1 of data, but the values can
be adapted very easily:

• σ(integrated luminosity) = 5%

• σ(cross sections) = 10%

• σ(jet energy scale) = 5%, change in jets propagated also into 6ET estimate
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• statistical uncertainty of the Monte Carlo prediction, based on the amount of originally produced events per
sample

It is important to stress that the algorithm also accounts for correlations in the context of systematic errors. For
global factors like cross sections all bins in a distribution are correlated, for the integrated luminosity even all
physics processes are correlated. In addition to this variations are not always just “up or down”, the JES uncertainty
actually redistributes the bins and is again correlated for all generated samples. These correlations have to be taken
into account when computing p-values and when generating pseudo-data.

The assumed cross section uncertainty of 10% is used for all Standard Model background processes, not distin-
guishing between different jet multiplicity bins or pT bins of the generated samples. Studying the expected PDF
uncertainties using the PDF reweighting method (see [30]) one can see that these typically range at the order of
2% to 8%, see [31] for details. The discussion of this and other theoretical uncertainties is still in flux, and our un-
derstanding of these numbers is likely to change in the future; therefore, we decided to use a single “conservative”
number.

5.8 QCD background estimation from data
While for Standard Model processes like W+jets or tt̄+jets we have Monte Carlo generator tools which can
produce fairly reliable predictions of shapes for the various distributions with high statistics, it is clear that for
QCD multijet production the enormous cross sections exceed the computational resources available. In addition
the theoretical uncertainties for multijet events are orders of magnitude larger than in the case of electroweak
processes. This analysis investigates events with at least a single isolated lepton; these are produced in QCD events
only via non-prompt mechanisms or via misidentification, e.g. muons from b-jets or electrons from misidentified
jets with a large pion fraction. Compared to the inclusive di-jet cross section these “fake” leptons are very rare,
and thus difficult to model using inclusive QCD Monte Carlo samples.

For our MUSiC approach we aim to estimate the QCD contribution from the data, thus do not want to rely on the
simulated prediction. Since in a generic search one is looking at many different distributions and a diversity of final
states, it seems not practical to define control regions for each specific event class. One has to use a more general
estimate of the QCD background applicable to all classes. The uncertainties of such cross-class extrapolations
have to be absorbed by an appropriate global uncertainty of the QCD estimate, which can be easily incorporated
into the search algorithm.

The strategy used to estimate the QCD from the data is similar to the methods commonly applied at the Tevatron
[32]. A single selection cut, which is prominent for distinguishing “fake” leptons from well measured isolated ones,
is inverted or relaxed. The sample with the inverted cut is then used to model the shape of the QCD background,
and a control region is defined where the sample is scaled to fill up the gap between the remaining SM Monte Carlo
samples and the data.
We exercise this method using final states with muons. Here the isolation cut is relaxed

0.1 < Rtrack−isolation =

∑
pT of tracks in 0.3 cone

pT (µ)
< 0.5 (8)

In this way we get a sample with similar kinematics compared to the QCD events entering the final selection.
Relaxing the cut even further one would risk to introduce larger differences in the distributions due to muons well
within hadronic jets.
Two control regions are defined,

• 110− 150 GeV in the
∑

pT distribution of the class 1µ 1jet + X

• 130− 180 GeV in the
∑

pT distribution of the class 1µ 6ET + X

These two inclusive classes represent quite different corners of the phase space analyzed with MUSiC, once re-
questing a lepton and a jet and once the combination of a lepton and missing transverse energy. In this way we
get two independent estimates of the scale factor to be used. Furthermore the two regions are both located at the
very low pT edge of the distributions, where signal contamination is expected to be small and QCD plus other SM
processes dominate. From these control regions we obtain the following scale factor with its uncertainty:
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fQCD =
“data” − SM MC without QCD

relaxed “data” − relaxed SM MC without QCD = 0.2 ± 0.1 (9)

The relative error of 50% indicates that the estimation of QCD from data for all event classes is not very precise.
Nevertheless, since QCD contamination in the signal region is not very large, in most cases even such a large error
should have a minor impact on the search sensitivity. It is more vital to get a proper shape of QCD in all classes
without the enourmous single bin fluctuations of a QCD Monte Carlo sample caused by the lack of MC statistics.
Note that since we exercise this method only using a QCD Monte Carlo sample (as “data”) the subtraction of the
other SM samples is not needed. In any case the contribution in the denominator from relaxed SM MC without
QCD should be negligable since these mostly fulfill Rtrack−isolation < 0.1.

Figure 13 shows the comparison of the QCD estimate from data with respect to the QCD Monte Carlo samples used
to perform the cut inversion, errors correspond to the uncertainty of the scaling factor. The sample with relaxed
cuts and the one fulfilling all final selection cuts agree well in terms of the shape. Note that the event classes shown
here do not contain the control regions, thus the agreement within the assumed errors serves as a good indication
that the extrapolation from one final state topology to another works reasonably well.
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Figure 13: QCD Monte Carlo and estimate using cut inversion in comparison, for two exemplary event classes.

5.9 SUSY sensitivity
There are several evident reasons why such a generic search strategy as presented here might be a good supplement
to more conventional analyses hunting for SUSY. First of all the large number of unconstrained parameters in most
supersymmetric extensions of the SM also leads to an almost unlimited parameter space where nature can pick
the SUSY scenario realized. Simplified models like MSSM try to shrink the number of free parameters using
well or not so well founded physics assumptions. Still the parameter space remains huge, with a multitude of
possible “benchmark” points leading to completely different decay channels and signal topologies. Thus it might
be dangerous to rely solely on analyses optimized on specific SUSY points.

Through their decay chains, SUSY particles often lead to spectacular cascades in the final state with high multi-
plicities of leptons and jets and a large amount of 6ET due to the LSP (lightest SUSY particle). So unlike single
resonance production as for example Z → µµ, SUSY does not predominantly favor a single topology, but does
contribute to a multitude of event classes within MUSiC. Thus this generic search aims to give a consistent picture
of SUSY particles appearing on top of the Standard Model prediction. The information of significant deviations
found in several classes could be combined to provide additional evidence for SUSY.

MUSiC performance in the specific channel 1µ,≥ 3jet, 6ET + X for LM1, LM2 and LM4
In order to be comparable more easily to alternative analysis strategies (cut-based and BDT), we will now focus
on the specific channel these analyses are optimized for. Of couse in a way this contradicts the basic philosophy
of MUSiC which does not aim to look only at a single topology. Still it is interesting to investigate how well the
algorithm performs compared to the specific analyses in this channel, assuming three exemplary SUSY points. In
a next step we will report about the global MUSiC results on LM4.

25



As introduced ealier we can repeat pseudo experiments assuming once the signal plus background hypothesis and
compare these to multiple background-only estimates. This gives us the median p-value and the expected event
class significance P̃ . The results for exemplary inclusive channels for all three SUSY points are shown in Table
16, assuming 1 fb−1 of luminosity.

SUSY Point Event Class Luminosity p-value (median) P̃ (expected) P̃ Standard Dev.
LM1 1µ 3jet 6ET + X 1 fb−1 2.5 · 10−9 1.1 · 10−04 3.9 σ
LM2 1µ 4jet 6ET + X 1 fb−1 8.1 · 10−4 0.09 1.7 σ
LM4 1µ 5jet 6ET + X 1 fb−1 3.5 · 10−7 7 · 10−05 4 σ
LM1 2e 3jet 6ET + X 1 fb−1 2.7 · 10−21 < 2 · 10−05 >4.3 σ

Table 16: Results for repeating S+B and B hypothesis multiple times, all for ΣpT distribution and assuming 1 fb−1.

SUSY Point Event Class Luminosity p-value (median) P̃ (expected) P̃ Standard Dev.
LM1 1µ 3jet 6ET + X 100 pb−1 3.7 · 10−5 4.7 · 10−3 2.8 σ
LM2 1µ 4jet 6ET + X 100 pb−1 3.9 · 10−3 0.25 1.2 σ
LM4 1µ 5jet 6ET + X 100 pb−1 1.9 · 10−4 1.6 · 10−2 2.4 σ
LM1 2e 3jet 6ET + X 100 pb−1 1.3 · 10−6 8 · 10−5 3.9 σ

Table 17: Results for repeating S+B and B hypothesis multiple times, all for ΣpT distribution and assuming 100 pb−1.

These numbers clearly show that if LM1 or LM4 is realized in nature, within 1 fb−1 of luminosity MUSiC can
detect a significant deviation from the Standard Model expectation. With significances well above 3σ (≈ 10−3, see
Figure 17), a deviation inconsistent with the SM only assumption could be found in these parts of the SUSY pa-
rameter space. Using the single lepton channel a 5σ discovery is not within reach due to the large SM backgrounds
and the jet energy scale uncertainties assumed. In the lepton + jets + 6ET channel these lead to a considerable
variation of the SM background, on top of which the SUSY events are accumulated. More specific analysis strate-
gies might be able to decrease these uncertainties by optimizing selection cuts. Thus a synergy between MUSiC
spotting some significant deviation and a specific analysis then maximizing the sensitivity for a discovery in the
same channel looks promising.

Taking a closer look at the numbers one can see that in LM1 with its large cross sections a significant deviation
can even be found in the 3 jet channel. For LM4 events with at least 4 or 5 jets look more promising.

Since for cut-based and BDT analysis also the reach with only 100 pb−1 has been investigated, Table 17 summa-
rizes these numbers. One can see that in the single lepton channels the expected event class significance decreases
a lot. Even for LM1 the obeserved deviation from the SM remains just under 3σ. On the other hand the last line
presents the results for a class with more than one lepton (2e 3jet 6ET + X). Here also within 100 pb−1 a signif-
icant deviation can be found. Assuming more luminosity (Table 16) only upper limits can be set for the general
significance. The tiny p-value of 10−21 indicates that in this channel even a 5σ discovery seems possible.

Figure 14 shows the ΣpT distribution for the event classes with significant deviations discussed above, assuming
1 fb−1 of luminosity. Here only a single pseudo experiment for the signal+backgound hypothesis is shown, thus
the data points correspond to a single CMS experiment. All uncertainties are included when creating the toy data,
and the shaded area corresponds to the total error of the SM backgound estimate for each bin. The event class
significance P̃ is of course computed repeating the background-only hypothesis numerous times.

The dominant background sources in both distributions are tt̄ and W+jets. In both cases the region of interest with
the biggest discrepancy found in the “data” lies in the high pT tail where the SUSY contribution becomes bigger
than or equal to the Standard Model expectation. The deviations in both cases well exceed the 3σ level.

So far only the results for LM1 and LM4 have been discussed. The P̃ of 9% for LM2 indicates that the algorithm
has no chance to discover anything here. The small cross section of LM2 leads to only few SUSY events in the
lepton + jet + 6ET final state, thus data and SM-only hypothesis cannot be distinguished. Nevertheless, this is the
point where the proper meaning of MUSiC sets in: MUSiC looks at a variety of final state topologies, thus there
is hope that at least in other channels LM2 can be revealed. Unfortunately the small cross section of LM2 leads
to significant deviations only in a small number of event classes, all belonging to the type tri-leptons + jets (+6ET ).
Here, the SM backgrounds are tiny, so events are found in topologies where no Monte Carlo events have been
generated.
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Figure 14: Results of an exemplary single pseudo-experiment assuming 1 fb−1. The dotted lines indicate the region of interest
where the smallest p-value has been found, P̃ corresponds to the significance assuming this single set of toy data. The shaded
area corresponds to the total uncertainty of the SM expectation. Numbers for the regions of interest (dotted lines): upper plot
Ndata = 505 and NMC = 191 ± 42; lower plot Ndata = 156 and NMC = 52 ± 12

Figure 15 shows the ΣpT distribution for the event classes 2e 1µ 3jet 6ET + X . Only a single Z+jets event at
1800 GeV is contributing. Since a p-value for zero background is not defined, we conservatively assume a 68%
upper confidence level for the bins with “data” entries, thus using 1.15 generated Z-events instead of zero. Still
an event class significance above 3σ is found, thus giving evidence for LM2. It is clear that as a consequence
one would look at this channel in more detail, i.e. by using a Z + jets Monte Carlo with a higher statistic and
carefully estimating possible other SM background constributions, or investigating the possibility of an additional
contamination from “fake” leptons. Nevertheless, MUSiC is able to serve as an early warning system and points to
final state topologies where interesting physics beyond the Standard Model could be present. Some more general
features of MUSiC will be discussed in the following, taking LM4 as an example.

General MUSiC performance assuming LM4
As mentioned earlier, the advantage of a generic search is that it is sensitive to deviations from the SM expectation
in a variety of final state topologies, thus possibly giving a more consistent picture of SUSY appearing within the
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Figure 15: Results of an exemplary single pseudo experiment for LM2 assuming 1 fb−1. Since no SM background contributes
in the bins with data points, a 68% upper confidence level is used.

first LHC data. In order to test the more global results of MUSiC, a complete scan of all possible final states using
the distributions

∑
pT and Minv (MT ) has been performed, assuming SUSY point LM4 and 1 fb−1.

In a first step, signal plus backgound hypothesis and background-only hypothesis have been repeated numerous
times in order to get an estimate for the expected magnitude of any discrepancy (pmedian and P̃expected). We can
summarize the results in the following way:

• LM4 contributes to 160 exclusive event classes, 15% show significant deviations with P̃expected ≤ 10−4

• LM4 contributes to 260 inclusive event classes, 30% show significant deviations with P̃expected ≤ 10−4

Of course in the case of inclusive classes deviations found are “duplicated” in some way since 1µ 5jet events
contribute to 1µ 2jet +X , 1µ 3jet +X and so on. Nevertheless, when comparing similar final state topologies, the
inclusive classes tend to have smaller pmedian values and larger event class sigificances than the exclusive ones. In
the exclusive channels only multi-lepton final states with 2 or 3 leptons look promising. For the inclusive classes
also the single lepton plus jets plus 6ET show indications of SUSY. Still in general di-leptons or events with even 3
or 4 leptons show bigger SUSY excesses over the SM background.

The two kinematic distributions examined,
∑

pT and Minv (MT ), lead to similar results. A systematic advantage
of one of them cannot be observed in the presented LM analyses.

The result that the inclusive channels look more promising is consistent with the expectation one would have for
SUSY events: The complex decay chains produce a certain number of jets only with a certain probability, there is
no single (exclusive) topology enhanced over others. Thus by summing up events of a certain topology inclusively
more SUSY contributions can be integrated, and the excess observed in the data is more striking.

Also one should note that in the case of inclusive classes a number of final states without 6ET (e.g. 3µ1jet+X,∑
pT : p-value(median) = 4.4 · 10−7, P̃ (expected) ≤ 2 · 10−5) show significant deviations. This could be useful

if, in the case of early CMS running, the understanding and description of 6ET proves to be more difficult than
anticipated.

Two exemplary distributions corresponding to a single pseudo experiment are shown in Figure 16. These represent
final states with same or different flavor di-leptons plus several jets and a large amount of 6ET . Here the amount
of SM background is relatively small (mostly tt̄), while SUSY still contributes with a relatively large number of
events. The MUSiC algorithm chooses in both event classes regions where the sum of SUSY and SM-background
well exceeds the SM-only expectations and its corresponding errors.

5.10 Statistical interpretation of all event classes
So far the individual event classes have been interpreted and compared to the sensitivity of the specific analyses
apart from the complete set of events. For each event class a significance P̃ has been computed which easily can
be translated into standard deviations, see left plot of Figure 17.
In addition a final trial factor can be estimated and applied to account for the multiple number of final state
topologies looked at. A similar punishment factor could also be used when considering the large number of
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Figure 16: Results of an exemplary single pseudo experiment assuming 1 fb−1. The dotted lines indicate the region of interest
where the smallest p-value has been found, P̃ corresponds to the significance assuming this single set of toy data. The shaded
area corresponds to the total uncertainty of the SM expectation. Numbers for the regions of interest: left plot Ndata = 164 and
NMC = 49 ± 12, right plot Ndata = 49 and NMC = 10 ± 3.

independent analyses conducted by the whole CMS collaboration.
Conservatively neglecting correlations between the event classes (which is not true for the inclusive ones for sure),
the final statistical estimator for the overall degree of agreement with the Standard Model can be quantified using
the formula

PCMS = 1 − (1 − P̃ )n, (10)

where P̃ is the significance of a certain event class and n refers to the total number of distributions analysed. The
right plot of Figure 17 displays this translation for various number of event classes considered. As an example, if
1000 classes are used a local 5-sigma deviation in a certain topology leads to roughly 3.5-sigma for global CMS.
An interesting approach to lower the penalty of the trial factor is to use a so called hypothesis ranking as described
here [33]. Its feasibility within the MUSiC algorithm is currently investigated and will be a topic of a future note.
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Figure 17: Left: Translation of significance (P̃ ) into number of standard deviations σ. Right: Translation of significance per
event class (P̃ ) into global-experiment significance after accounting for trial factors (PCMS).

6 Summary and conclusions
The sensitivities of the three analyses follow the expectations. The model independent search MUSiC performs best
when several channels are combined into a comprehensive review in accordance with this strategy. For individual
channels, this search has, for an integrated luminosity of 1 fb−1, discovery sensitivity for LM1 and LM4. The same
is true for the cut based and the BDT analysis, but their expected significances are higher – or correspondingly, the
required discovery luminosities are lower. The best sensitivity is achieved with BDTs.
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The LM2 point is difficult for all analyses with 1 fb−1 of integrated luminosity. Both the cut based analysis would
require more luminosity, or a reduction of systematic uncertainties. MUSiC would find LM2 when including
additional signatures.

All three searches confirm the feasibility of an early discovery of low mass SUSY. For early data taking, assuming
a signal with a very large cross section (e.g. LM1), a cut based analysis which can be implemented also with only
limited detector understanding would be preferable. Once an excellent detector understanding has been achieved,
BDTs could lead to discovery, in particular if the signal cross sections are small and the backgrounds high. MUSiC
will help to stay alert to all possibilities, be it standard SUSY or an unexpected signal, or the understanding of the
detector and backgrounds.

All three analyses outline the importance of systematic uncertainties, but also the importance of sufficient MC
statistics or data-driven techniques to reduce the reliance on MC.
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A Cross Sections
Dataset NLO Cross Section [fb] Number of Events Generator Comments
LM1 61122 120k Pythia NLO (Prospino 2)
LM2 10520 110k Pythia NLO (Prospino 2)
LM4 27691 100k Pythia NLO (Prospino 2)

Table 18: Signal Datasets used in the analyses. The total NLO cross section from Prospino 2 (with CTEQ6M PDF) are quoted
as well as the number of analysed events. SoftSusy has been used to calculate the mass spectrum, SUSY-Hit to decay the
particles and Pythia for the simulation of the parton shower.

Dataset LO Cross Section [fb] # of Events Generator Comments
W 0jets 50736000 8.8M Alpgen Chowder, NLO (k = 1.12)

W 1jets 0 100 10348800 9.1M Alpgen Chowder, NLO (k = 1.12)
W 1jets 100 300 287280 247k Alpgen Chowder, NLO (k = 1.12)
W 1jets 300 800 3259 57k Alpgen NLO (k = 1.12)

W 1jets 800 1600 17.8 60k Alpgen NLO (k = 1.12)
W 2jets 0 100 2842560 2.4M Alpgen Chowder, NLO (k = 1.12)

W 2jets 100 300 252000 287k Alpgen Chowder, NLO (k = 1.12)
W 2jets 300 800 4525 25k Alpgen NLO (k = 1.12)

W 2jets 800 1600 35.3 54k Alpgen NLO (k = 1.12)
W 3jets 0 100 658560 353k Alpgen Chowder, NLO (k = 1.12)

W 3jets 100 300 120288 118k Alpgen Chowder, NLO (k = 1.12)
W 3jets 300 800 3438 107k Alpgen NLO (k = 1.12)

W 3jets 800 1600 33.7 53k Alpgen NLO (k = 1.12)
W 4jets 0 100 138432 126k Alpgen Chowder, NLO (k = 1.12)

W 4jets 100 300 42336 40k Alpgen Chowder, NLO (k = 1.12)
W 4jets 300 800 1747 29k Alpgen NLO (k = 1.12)

W 4jets 800 1600 21.1 55k Alpgen NLO (k = 1.12)
W 5jets 0 100 84300 62k Alpgen Chowder, NLO (k = 1.12)

W 5jets 100 300 44352 44k Alpgen Chowder, NLO (k = 1.12)
W 5jets 300 800 3394 40k Alpgen NLO (k = 1.12)

W 5jets 800 1600 66.3 17k Alpgen NLO (k = 1.12)
Z 0jets 5040000 3.3M Alpgen Chowder, NLO (k = 1.12)

Z 1jets 0 100 1041600 945k Alpgen Chowder, NLO (k = 1.12)
Z 1jets 100 300 33600 36k Alpgen Chowder, NLO (k = 1.12)
Z 1jets 300 800 403 30k Alpgen NLO (k = 1.12)

Z 1jets 800 1600 2.24 13k Alpgen NLO (k = 1.12)
Z 2jets 0 100 302400 289k Alpgen Chowder, NLO (k = 1.12)

Z 2jets 100 300 31584 35k Alpgen Chowder, NLO (k = 1.12)
Z 2jets 300 800 616 29k Alpgen NLO (k = 1.12)

Z 2jets 800 1600 4.48 22k Alpgen NLO (k = 1.12)
Z 3jets 0 100 77280 73k Alpgen Chowder, NLO (k = 1.12)

Z 3jets 100 300 14448 24k Alpgen Chowder, NLO (k = 1.12)
Z 3jets 300 800 448 28k Alpgen NLO (k = 1.12)

Z 3jets 800 1600 4.26 16k Alpgen NLO (k = 1.12)
Z 4jets 0 100 15456 33k Alpgen Chowder, NLO (k = 1.12)

Z 4jets 100 300 4704 7k Alpgen Chowder, NLO (k = 1.12)
Z 4jets 300 800 224 25k Alpgen NLO (k = 1.12)

Z 4jets 800 1600 2.8 12k Alpgen NLO (k = 1.12)

Table 19: Standard Model background datasets used in the analyses. The leading order crossection of the quoted generator and
the approximate number of events used in the analyses are stated. The comment column contains the k-factor and the “soup”
from which the dataset has been extracted.
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Dataset LO Cross Section [fb] # of Events Generator Comments
Z 5jets 0 100 9744 12k Alpgen Chowder, NLO (k = 1.12)
Z 5jets 100 300 5712 6k Alpgen Chowder, NLO (k = 1.12)
Z 5jets 300 800 504 25k Alpgen NLO (k = 1.12)
Z 5jets 800 1600 8.3 37k Alpgen NLO (k = 1.12)
t̄t 0jets 618825 1.5M Alpgen Chowder, NLO (k = 1.85)
t̄t 1jets 176490 362k Alpgen Chowder, NLO (k = 1.85)
t̄t 2jets 33670 81k Alpgen Chowder, NLO (k = 1.85)
t̄t 3jets 5920 14k Alpgen Chowder, NLO (k = 1.85)
t̄t 4jets 1480 5.3k Alpgen Chowder, NLO (k = 1.85)
WW 70000 850k Pythia LO
WZ 26870 360k Pythia LO
ZZ 11200 140k Pythia LO
QCD 0 15 5.3e+13 14M Pythia Gumbo, LO
QCD 15 20 1.46e+12 1.7M Pythia Gumbo, LO
QCD 20 30 6.3e+11 2.7M Pythia Gumbo, LO
QCD 30 50 1.63e+11 2.5M Pythia Gumbo, LO
QCD 50 80 2.16e+10 2.5M Pythia Gumbo, LO
QCD 80 120 3.08e+09 1.2M Pythia Gumbo, LO
QCD 120 170 4.94e+08 1.3M Pythia Gumbo, LO
QCD 170 230 1.01e+08 1.2M Pythia Gumbo, LO
QCD 230 300 2.45e+07 1.2M Pythia Gumbo, LO
QCD 300 380 6.24e+06 1.2M Pythia Gumbo, LO
QCD 380 470 1.78e+06 1.2M Pythia Gumbo, LO
QCD 470 600 683000 1.2M Pythia Gumbo, LO
QCD 600 800 204000 500k Pythia Gumbo, LO
QCD 800 1000 35100 100k Pythia Gumbo, LO
QCD 1000 1400 10900 30k Pythia Gumbo, LO
QCD 1400 1800 1600 30k Pythia Gumbo, LO
QCD 1800 2200 145 20k Pythia Gumbo, LO
QCD 2200 2600 23.8 10k Pythia Gumbo, LO
QCD 2600 3000 4.29 10k Pythia Gumbo, LO
QCD 3000 3500 0.844 10k Pythia Gumbo, LO
QCD 3500 inf 0.108 10k Pythia Gumbo, LO
PhotonJets 0 15 1.7e+11 300k Pythia Gumbo, LO
PhotonJets 15 20 2.57e+08 520k Pythia Gumbo, LO
PhotonJets 20 30 1.32e+08 600k Pythia Gumbo, LO
PhotonJets 30 50 4.1e+07 510k Pythia Gumbo, LO
PhotonJets 50 80 7.2e+06 520k Pythia Gumbo, LO
PhotonJets 80 120 1.3e+06 530k Pythia Gumbo, LO
PhotonJets 120 170 275000 560k Pythia Gumbo, LO
PhotonJets 170 300 87000 200k Pythia Gumbo, LO
PhotonJets 300 500 8200 30k Pythia Gumbo, LO
PhotonJets 500 7000 870 30k Pythia Gumbo, LO
emQCD 5.335e+11 8.7M Pythia Stew, LO
emQCD bbbar 5 50 1.7005e+10 3.0M Pythia Stew, LO
emQCD bbbar 50 170 1.6524e+08 3.0M Pythia Stew, LO
emQCD bbbar 170 inf 2.535e+06 2.6M Pythia Stew, LO
muQCD 4.4e+10 20M Pythia Stew, LO
B JPsi 4.26738e+07 500k Pythia Stew, LO
BottomOnia 0 20 3.20423e+07 1M Pythia Stew, LO
BottomOnia 20 inf 425427 1M Pythia Stew, LO

Table 20: More Standard Model background datasets used in the analyses. The leading order crossection of the quoted
generator and the approximate number of events used in the analyses are stated. The comment column contains the k-factor
and the “soup” from which the dataset has been extracted.
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Dataset LO Cross Section [fb] # of Events Generator Comments
CharmOnia 0 20 3.274e+08 1M Pythia Stew, LO
CharmOnia 20 inf 2.473e+06 1M Pythia Stew, LO
DrellYan ee 200 1656 42k Pythia LO
DrellYan ee 500 86.15 65k Pythia LO
DrellYan ee 1000 7.45 12k Pythia LO
DrellYan ee 1500 1.22 4k Pythia LO
DrellYan ee 2000 0.264 10k Pythia LO
DrellYan mumu 200 1656 42k Pythia LO
DrellYan mumu 500 86.15 42k Pythia LO
DrellYan mumu 1000 7.45 13k Pythia LO
DrellYan mumu 1500 1.22 14k Pythia LO
DrellYan mumu 2000 0.264 13k Pythia LO

Table 21: More Standard Model background datasets used in the analyses. The leading order crossection of the quoted
generator and the approximate number of events used in the analyses are stated. The comment column contains the k-factor
and the “soup” from which the dataset has been extracted.
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