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Abstract

We describe a likelihood-based algorithm to perform the identification of electrons with the CMS
experiment. The observables used in the likelihood function are presented, focusing on the discrim-
ination between real and fake electron candidates coming from mis-identified jets. We describe the
control samples and the strategy to define the probability density functions on data. Finally we evalu-
ate the performances of the electron identification in terms of efficiency and mis-identification rate as
a function of the kinematics of the electrons.
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1 Introduction
In this note we present a likelihood approach to the electronidentification in CMS. We put the emphasis on the
identification of electrons in the momentum range5 < pT < 80 GeV/c, which is the range relevant for Standard
Model Higgs boson searches (i.e.H → ZZ∗ → e+e−e+e− and H → WW ∗ → e+νe−ν) and for some
measurements with the first LHC data. Examples are the measurement of the cross section ofZ+jets and the more
challengingW+jets.

The electron identification variables we use as input of the likelihood function have been extensively described
elsewhere [1] and widely used in CMS analysis. The identification also profits by sub-dividing the electrons in
classes according to the fraction of energy lost in the passage through the tracker material. The possibility of large
bremsstrahlung emissions introduces non-Gaussian fluctuations of the calorimetry and tracking measurements,
so different classes can have different ECAL-tracker patterns. We consider these differences in the likelihood
function.

We present the strategy to determine the probability density functions of the electron identification variables on
data control samples with the first recorded data, for both signal and background hypotheses.

We finally discuss the performances of the identification in terms of efficiency on electrons fromW → eν decays
and of background mis-identification probability (from jets).

Some results on the effects of ECAL mis-calibrations and tracker misalignment in the LHC start up conditions are
discussed, based on Monte Carlo events of theCSA07 production.

2 Monte Carlo Datasets
The datasets used in this study come from different Monte Carlo samples. The events produced with different
generators are passed through the full simulation of the CMSdetector response, that relies on the on standard
CMSSW software. For most of the results presented here theSummer08 Monte Carlo production was used. The
used samples are:

• W+jets (MadGraph matrix-element generator)

• Z+jets (MadGraph matrix-element generator)

• tt̄+jets (MadGraph matrix-element generator)

• QCD jets, enriched in e.m. fraction, for thepT bins of the leading parton:

– 20 < pT < 30 GeV/c,

– 30 < pT < 80 GeV/c,

– 80 < pT < 170 GeV/c

At the moment of the preparation of this note, the samples arereconstructed with the CMS software release
CMSSW 2 1 8 with ideal conditions, while re-reconstruction with different mis-alignment and mis-calibration
scenarios are not yet available. For this reason, the effectof the dispersion of the inter-calibration and alignment
constants expected for integrated luminosities of∼10 and 100pb−1 are estimated using theCSA07 Monte Carlo
production reconstructed with releaseCMSSW 1 6 7.

3 Input Variables
This section describes the electron identification variables entering the likelihood function, and the classification
used to sub-divide electrons in categories with different characteristics (and different purities). The set of variables
used in this algorithm is the same described in the note [1], which are well established ones. Large attention is
paid to the ECAL cluster shape variables, which are very correlated among them since they all describe the width
of the e.m. deposit of the electrons. Only a limited set of theexisting ones has been chosen.
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3.1 Electron Classification

The population of the reconstructed electrons is divided into distinct classes, taking into account the amount of the
bremsstrahlung and the energy loss in the passage of the electron through the tracker material. This classification is
used to account for non-Gaussian sources of fluctuations of the ECAL supercluster energy and tracker momentum
measurement, and it also results suitable to distinguish the different track-supercluster patterns with consequent
different performances of the electron identification. Thefour, mutually exclusive, electron classes are described
in the note [1]. Here we give only a brief description of the properties of each class:

• golden electrons: this class represents the most precisely measured electrons, which are least affected by
bremsstrahlung and have a good track-supercluster match. The pattern in the ECAL is characterized by a
single “seed” cluster.

• big brem electrons: this class contains the non-golden electrons characterized by a single “seed” cluster in
ECAL, but with a large fraction of the initial energy radiated very early or very late in the tracker, resulting
in the simple energy deposition in the ECAL.

• narrow electrons: this intermediate class contains electrons which still have a single “seed” cluster in ECAL,
lower bremsstrahlung that the ones belonging to the big bremones, but have a relaxed track-supercluster
geometrical match.

• showering electrons: this class contains the electrons which are badly measured,due to an early radiation of
a high amount of the electron energy, resulting in a supercluster made of multi sub-clusters.

The fraction of electrons in a given category is estimated ona sample of electrons fromW decays having a
transverse momentum20 < pT < 50 GeV/c. We also estimate these fractions for jets mis-reconstructed as
electrons in a sample ofW+jets with the jet in the same momentum range. The results areshown in Table 1. We

electrons jets
golden 17% 7%

big brem 5% 0.5%
narrow 8% 0.5%

showering 70% 92%

Table 1: Population of the four electron classes for real electrons coming fromW decays, having a transverse
momentum20 < pT < 50 GeV/c and for fake electrons inW+jets sample in the same momentum range.

did not performed a dedicated study of the electrons fallingin the ECAL inter-module cracks and in the larger
crack between the ECAL barrel and endcap and we treat them as showering electrons.

Most of the jets mis-reconstructed as electrons are classified as showering, while very few populate the big brem
and narrow classes. This makes difficult to model the probability density functions (PDFs) of variables for the
two intermediate classes using the first hundredspb−1 of integrated luminosity. For this reason we merge the first
three classes in the list above, characterized by having a single cluster in the ECAL, in a unique class, which we
define asnon-showering. In Fig. 1 we show the relative population of each class for real electrons and jets as a
function of the candidateη andpT . For real electrons the fraction of showerings is proportional to the amount of
tracker material crossed by the electron, and therefore presents strong variations alongη; it is quite constant with
the transverse momentum, at least forpT > 15 GeV/c. The fractional radiation lengthx/X0 as a function ofη is
shown in Fig. 2 for the different sub-detectors in front of ECAL [2].

3.2 Electron Identification Variables

In this section we discuss the variables used to establish the compatibility of the reconstructed electron candidate
with the track and supercluster pattern expected from a single real electron. The distributions of these variables
(separately for barrel and endcap, non-showering and showering candidates) are used as inputs for the likelihood
algorithm. Since the cross-correlation between the variables plays an important role in the performances of the
algorithm we checked that the proposed set has correlationssmall enough both for signal and background.

The variables used in the likelihood algorithm coincide with the ones described in [1]. A cut-based electron
identification exploiting the same variables has been extensively used in many analyses (ex.W/Z+jets ratio [?]
andH → WW ∗, [4]), both performed on the CSA07 Monte Carlo samples). They are:
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Figure 1: Fraction of candidates classified as showering or cracks for true electrons fromZ or for mis-reconstructed
jets as a function ofη (left) andpT .
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Figure 2: The fractional radiation lengthx/X0 as a function ofη for the different sub-detectors in front of ECAL.

• ratio of the energy of the supercluster seed over the track momentum at the last tracker layer,Eseed/pout

• geometrical matching between the track parameters at the interaction vertex extrapolated to the super cluster
and the measured super cluster position,| ∆ηin | = | ηSC − ηextrap

in | and| ∆φin | = | φSC − φextrap
in |

• ratio of the energy deposited in the HCAL towers in a cone of radius∆R =
√

∆φ2 + ∆η2 = 0.1 centered
on the electromagnetic supercluster position over the supercluster energy,H/E

• ratio of the energy sums over the 3×3 and 5×5 matrices centred on the highest energy crystal of the seed
cluster,

∑

9 /
∑

25

• the width of the ECAL cluster along theη direction: σ2
ηη =

∑

crystal

(ηi − ηseed)2 Ei

Eseed
. We didn’t applied

the correction to account different crystal geometry in theendcaps1).

The distributions of the identification variables are made in the signal case with candidate electrons coming from
the decay of aZ boson (probe), when the other electron of theZ is selected as a good electron (tag). We describe
in Sec. 4.2 the selection of the tag and probe objects and the strategy to obtain the signal PDFs from that dataset.
As a background we consider the hadrons (π±,K±,...) inside jets which are reconstructed as electron candidates
due to a some energy release in the ECAL of the hadron itself, or of the neighbouring particles inside the jet, (fake
electrons). Jets are produced with high rate in QCD processes and constitute one of the main backgrounds for
many analyses. Again, we describe a control sample on data with which characterizing the jet PDFs in Sec. 4.2.

1) We plan to apply corrections for endcap when we make the PDFs with the newsamples of the Summer08 Monte Carlo
production.
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The possible correlation between electron identification and theisolation variables has to be accounted for and the
study of the performances of the electron identification cannot be independent by the isolation criteria applied in
the electron selection. As an example,H/E can depend on the jet multiplicity in the event. We thereforeconsider
only loose isolated candidate electrons, both for signal and background.
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Figure 3: Distribution, normalized to unity, of the electron identification variables used as input in the likelihood
for barrel. The signal distributions are split according the classification described, the background ones are un-
split, as they enter the likelihood. Top:Eseed/pout(left), H/E(right). Middle: ∆ηin(left), ∆φin(right). Bottom:
∑

9 /
∑

25(left), σηη(right).

Fig. 3 and Fig. 4 show the discriminating variables used as input in the likelihood algorithm for barrel and endcap
electrons, respectively. For simplicity, we give only the variables for the kinematic binpT > 15 GeV/c. The
double peak in the∆ηinvariable for endcap electrons is supposed to be correlated with the opposite tilt of crystals
in the two ECAL endcaps. The electrons withη > 0 have mainly∆ηin > 0 and vice-versa.

4 Extraction of PDFs from data control samples
In order not to rely too much on Monte Carlo description of theelectron identification variables, the distributions
can be extracted from data control samples both for signal and for background. In the following we describe the
control samples that can be used on data and the strategy to
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Figure 4: Distribution, normalized to unity, of the electron identification variables used as input in the likelihood
for endcap. The signal distributions are split according the classification described, the background ones are
unsplit, as they enter the likelihood. Top:Eseed/pout(left), H/E(right). Middle: ∆ηin(left), ∆φin(right). Bottom:
∑

9 /
∑

25(left), σηη(right).

4.1 Electron PDFs from Z decays

A quite clean electron control sample can be extracted by theZ decays. The production of theZ boson can be
associated to the production of jets. The cross section of this process decreases roughly as a power ofαs with the
jet multiplicity. We use theZ+jets Monte Carlo sample produced with MadGraph matrix-element calculator.

To extract a clean sample of electrons to model the PDFs of theelectron identification variables we use thetag and
probe method. This method is also used to estimate the electron reconstruction and identification efficiencies [5].

This method consists of selecting an electron with some quality criteria applied (tag) and look for another one in
the event which, combined with the tag, form an invariant mass close to the one of theZ (probe). On the probe
electron we study the electron identification variables. Inorder to have the largest electron sample, if the electron
selected as a probe also fulfill the quality criteria for a tag, the roles are inverted and the first electron is used as a
probe.

We require at least two reconstructed electrons (pixelMatchGsfElectron) in the event2) with:
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• |η| < 2.5

• pT > 5 GeV/c

If more than 2 electrons are selected in the event, we choose the two which give the invariant mass closest to theZ
nominal mass [6]. To clean up the sample we apply loose identification and isolation criteria on the tag electron:

• loose category based electron identification, defined in [7]

• loose tracker isolation:
∑

pT /pelectron
T < 0.20 in a cone of∆R < 0.4 around the electron track

Since in a typical analysis the electron identification is used together with isolation criteria, we also apply the
same loose isolation on the probe electron. This requirement does not affect too much the electron identification
variables on true electrons, while we expect to have more effect on background (mainly inH/E).

Even if the background under theZ mass peak is expected to be small, still some contamination can arise and
distort the shapes of the signal PDFs. We apply a statisticalbackground subtraction which makes use of the fullZ
lineshape extracted on data. In order to do this, we considera loose requirement on the di-electron invariant mass:

• 40 < me+e− < 110 GeV/c
2

and we assign to any event the probability to be signal or background through a maximum likelihood fit to the
di-electron invariant mass.

We model the invariant mass for signal with a Cruijff function [3], defined as:

f(x;m,σL, σR, αL, αR) = N × exp

[

−
(x − m)2

2σ2
L/R + αL/R(x − m)2

]

(1)

where theσL andαL (σR andαR) corresponds to resolution and tail parameters of the distribution for x − m <
0 (x − m > 0). The use of this function allows to describe the tail in the distribution,induced by the mis-
reconstruction of the energy of the electrons, due to possible leakage in the calorimeter or to large bremsstrahlung
emission in the tracker material3).

We apply the selection to theZ+jets Monte Carlo sample, correspondent to 300pb−1of integrated luminosity. If
both electrons are selected as tag, then the two probes enterthe dataset with the same invariant mass.

We apply the same selection on the samples that can be considered as the most relevant for theZ+jets process:

• W+jets

• tt̄+jets

• QCD di-jets

ForW+jets andtt̄+jets we apply the selection only on a subset correspondent to a luminosity of 300pb−1, as for
the signal. Instead we use all the available Monte Carlo statistics for QCD di-jets. We consider the selected events
in these samples as a unique background, and we parameterizethe di-electron invariant mass as a second order
polynomial. The distribution of the invariant mass for the tag-probe pairs is shown on Fig. 5, with the result of the
fit superimposed, both for signal and background components.

In order to apply our strategy on a sample similar to the one that is selected on data, we merge together the signal
and background events to get 300pb−1equivalent data. We then perform an unbinned maximum likelihood fit to
this dataset fixing the background shape to Monte Carlo, while leaving the signal lineshape floating as well as the
signal and background yields.

As output of the fit we get the signal and background yields, aswell as the signal Cruijff function parameters,
consistent with the expected values. The fit to the data-likesample is shown in Fig. 6.

2) In the Monte Carlo samples we used the trigger bits are not saved, so we didn’t required any trigger to be fired. The plan, as
soon as the information is saved, is to require the single electron trigger path.

3) The mean and theσL,R can be slightly biased due to the choice of the best electron pair, but we checked that this does not
shrink the background to peak near theZ mass peak.
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Figure 5: Distribution of the tag and probe electrons invariant mass forZ+jets events (left) andW+jets, tt̄+jets
events,QCD events (right) with the result of the fit superimposed. The drops in thee+e− invariant mass in the
right distribution are due to the generation thresholds applied to the different Monte Carlo samples composing the
background.
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Figure 6: Distribution of the tag and probe electrons invariant mass for a data-like merged sample formed by
Z+jets, W+jets, tt̄+jets andQCD events, for an integrated luminosity of 300pb−1, with the result of the fit
superimposed. The solid (dashed) line represents the projection of the signal+background (background only)
likelihood, as obtained from the fit result. The bump around 50 GeV/c

2is due by theZ generation threshold.

The value of the likelihood is then used to compute the signalsWeight [8], which is proportional to the probability
for that event of being signal4). We form the distributions of electron identification variables weighting each event
with its signalsWeight. In this way we are able to extract the signal PDFs directly ondata with a statistical
subtraction of background which fully exploit all the di-electron invariant mass shape. We also do not lose any
statistics as if we would have done a background subtractionfrom the sidebands of theZ mass peak. We call
these distributionssPlots. They have the characteristic that the integral of the distribution correspond to the fitted
number of signal events in the dataset.

We compare in Fig. 7 the distributions of the electron identification variables, for simplicity for barrel and endcap
together, and low and highpT bins together, as extracted from pureZ+jets Monte Carlo sample and as extracted
on data-like sample after the background subtraction with thesPlots averaging technique. The proof is limited by

4) The value of signal and backgroundsWeight can be negative to account for statistical fluctuations of the background
component.
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the fact that we used the same sample to parameterize the signal di-electron mass shape and to form the data-like
sample, but it shows that the subtraction of the background is satisfying. The signal PDFs can be then defined on
data with the first hundreds ofpb−1of integrated luminosity5).
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25(left), σηη(right).

4.2 Jet PDFs from QCD di-jets andW+jets

In the LHC environment jets are produced with a huge cross section, being driven by strong coupling, with respect
the electro-weak processes. The main process is the production of di-jets events. It can be used as a high statistics
control sample to estimate the PDFs of the electron identification variables for electron fake candidates coming
from jets.

The recording of di-jets events in the CMS data acquisition is driven by a dedicated jet trigger, which is prescaled
to satisfy the HLT rate requirements due to the very high rate. The cross section of QCD jet production withpT

5) The uncertainties on them are statistical only.
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of the leading parton between20 < pT < 170 GeV/c is about 0.5 mb. The productions ofW or Z bosons with
associated production of jets are electroweak processes, therefore the cross sections are much lower (respectively
18 nb and 1.5 nb). Assuming that the jet trigger efficiency is roughly similar for a QCD di-jet event and for a
W (Z)+jets event, then the contamination of electrons from vector bosons in the jet triggered sample is of the order
of 0.01%. In order to model the PDFs for the electron identification, at least one electron has to be reconstructed
and this requirement enhances the pollution of real electrons fromV +jets,V being a vector boson. The electron
reconstruction efficiency is about 95%, while the probability for a jet to be reconstructed as an electron is order of
10% in the worst case (jets ofpT > 20 GeV/c), as will be discussed in Sec. 6.2. The PDFs are built also requiring
that the reconstructed electron is loose isolated in the tracker. This request has an efficiency of about 95% on the
signal, while reducing the QCD jets about of a factor 50%. It therefore further lowers the average purity of the jet
trigger sample to the order of fraction of percent.

TheV +jets contamination depends on the fake electron spectrum,since i.e. thepT spectrum of jets falls quicker
than that of real electrons. In the following we look for the leading jet according to itspT (which plays the role of
the tag jet) and we define the probe as a reconstructed electron which is back-to-back to the tag jet in the transverse
plane. If more than one probe electron is reconstructed, we choose the furthest one from the leading jet. The
tag jet is reconstructed with the IterativeCone algorithm with ∆R=0.5; it’s required to have uncorrectedpT > 30
GeV/c and|η| < 25, to roughly emulate the trigger. In Fig. 8 we show the contamination of electrons fromW+jets
andZ+jets events in the selected QCD sample as a function of the fake electronη andpT . Such contamination
is defined as the number of probe electrons matching a real electron inW (Z)+jets events over the total number
of probes reconstructed inW+jets,Z+jets and QCD events. The background contamination in the QCD control
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Figure 8: W+jets (top) andZ+jets (bottom) contamination in the proposed background control sample. The
contamination is given as a function of the fake electron candidateη (left) andpT (right).

sample is better than 1% in the full range. The purity can be further enhanced exploiting the kinematics of the
events. As an example the following requirements can be applied:

• the uncorrected missing transverse energy of the event is required to beMET < 20 GeV

• the angle∆φ = |φtagjet − φelectron| between the tag jet and the probe electron should be close toπ (ex.
∆φ < 2.5) for a back-to-back di-jet event, while the directions are less correlated in theW+jets events due
to theW → eν decay.

• the invariant mass between the tag jet and the probe electronis mjet−electron < 60 GeV/c
2
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The first and the second requirements can be used to suppress the amount ofW+jets events. The proposed threshold
on missing transverse energy is chosen as the complementaryone for theW+jets selection in [3]. The efficiency
of this requirement is about 75% for QCD jets events, while itis about 10% forW+jets events. With this selection
considered, the pollution ofW+jets events is of the order of3 × 10−4. TheZ+jets sample is dominated by the
Z+0 jets where the two electrons are back-to-back and since anelectron is always reconstructed as a jet the∆φ
distribution is highly peaked. These events can be anyway suppressed to a negligible level applying the invariant
mass based criterion.

The distributions of missing transverse energy,∆φ and di-electron invariant mass for the QCD di-jet,W+jets and
Z+jets are shown in Fig. 9.
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Figure 9: Distribution of the missing transverse energy (top, left), ∆φ (top, right) and di-electron invariant mass
(bottom) for the QCD di-jet,W+jets andZ+jets.

Examples of processes which produces fake electrons are QCDdi-jets (fake background forW+jets) andW+jets
(for dibosons, ex.WW andH → WW ∗). We compare the electron identification variables for fakeelectrons
reconstructed in the QCD di-jet samples and the ones reconstructed in theW+jets samples in Fig. 10 and 11 for
barrel and endcap, respectively. No significant differenceis seen in most of the variables for the two samples, only
the cluster shape variables seem to be slightly affected. Wewill investigate if the differences in the cluster shape
variables are due to the quark content of the jets in further studies.

5 Likelihood Function Definition
We described the observables that can be used to discriminate between real electrons and hadrons in Sec. 3.2.
Probability Density Functions (PDFs) are constructed for each of them from control samples on data, as described
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in Sec. 4.2. Under the assumption of indepedent measurements of these variables, they are combined to compute
the likelihoodLk,c(ξ) for:

• two particle hypotesisξ = {e, jet},

• 4 kinematic bins
k = {(pT < 15GeV/c; barrel), (pT > 15GeV/c; barrel), (pT < 15GeV/c; endcap), (pT > 15GeV/c; endcap)},

• 2 electron classes
c = {non − showering, showering}:

The likelihood function is defined as the product of the single variable PDF (Pk,c(x; ξ)):

Lk,c(ξ) = Pk,c(Eseed/pout; ξ) · Pk,c(H/E; ξ) · Pk,c(∆ηin; ξ) ·

Pk,c(∆φin; ξ) · Pk,c(
∑

9 /
∑

25; ξ) · Pk,c(σηη; ξ)· (2)

Weighting the individual likelihoods with theira priori probabilitiespξ, we define the likelihood ratio as:

r =
peL(e)

peL(e) + pjetL(jet)
(3)

12



out
/pseedE

0 1 2 3 4 5 6 7 8

a.
u

.

-410

-310

-210

-110 jets from QCD

jets from W+jets

H/E
0 0.02 0.04 0.06 0.08 0.1

a.
u

.

-210

-110

jets from QCD

jets from W+jets

 (rad)
in

η ∆
-0.02 -0.015 -0.01 -0.005 0 0.005 0.01 0.015 0.02

a.
u

.

-210

jets from QCD

jets from W+jets

 (rad)
in

φ ∆
-0.1 -0.05 0 0.05 0.1

a.
u

.

-210

jets from QCD

jets from W+jets

25/s9s
0.5 0.55 0.6 0.65 0.7 0.75 0.8 0.85 0.9 0.95 1

a.
u

.

-310

-210

jets from QCD

jets from W+jets

)2 (radηησ
0 0.01 0.02 0.03 0.04 0.05

a.
u

.

-510

-410

-310

-210

-110
jets from QCD

jets from W+jets

Figure 11: Distribution, normalized to unity, of the electron identification variables used as input in the likelihood
for fake electrons in endcap reconstructed in a sample ofW+jets (blue line) and QCD di-jets (red dots). The
distributions are for all the electron classes together. Top: Eseed/pout(left), H/E(right). Middle: ∆ηin(left),
∆φin(right). Bottom:

∑

9 /
∑

25(left), σηη(right).

Since the a priori probabilities depend on the trigger settings, and these are not yet defined, we set them all equal
to 1, i.e. assuming no a priori knowledge.

This likelihood ratio can be used as an electron identification variable asking a reconstructed electron to satisfy a
given threshold onr, which may vary between 0 and 1.

The variables that enter the likelihood definition are the ones used in the cut based identification described in [1].
The product of the single PDFs in Eq. 2 can be strictly interpreted as a probability only in the hypotesis of the
variables being uncorrelated. We found that the correlation among the used electron identification variables
is at the percent level for both the showering and non-showering electrons (exceptions are: about 6% between
Eseed/pout and

∑

9 /
∑

25for the non-showering electrons and 15% betweenEseed/poutandσηηfor the showering
ones). Given this level of correlation, we decided to still use all the variables of [1] in the likelihood.

In order to estimate the likelihood algorithm performances, we define two standard thresholds, one giving about
97% overall efficiency onW → eν events (loose) and another with 64% efficiency on the same sample (tight).
These efficiencies have been defined to be the same of the standard cut based electron identification on the same
events [7].

The performances are estimated in terms of efficiency on trueelectrons and rejection of fake candidates. These
quantities are shown in terms ofη andpT of the electrons or of the faking jet, respectively.
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6 Algorithm Performances
We study the electron efficiency and mis-identification of the likelihood algorithm on the Monte Carlo samples
in the Summer08 production, using the PDFs currently available in the software releaseCMSSW 2 1 12, which
were done using theCSA07 Monte Carlo production. The PDFs are slightly changed with respect those samples,
mostly inH/E variable, since in the newest release the zero-suppressionin HCAL is applied, thus removing the
tail at negative values inH/E. This can bring to a sub-optimal performance of the algorithm. More important, this
is also a proof of the stability of the algorithm with respectto small changes of the input variables.

6.1 Electron identification efficiency

We evaluate electron identification efficiency onW+jets events, withW → eν prompt decay. We define the
efficiency as the number of reconstructed and identified PixelMatchGsfElectrons with respect the true electrons
coming from the prompt decay of theW which are generated in−2.5 < η < 2.5 and have apT > 10 GeV/c.
A reconstructed electron matches the generated one if the angular distance between the direction of the true one
and the reconstructed GSF track extrapolated at vertex∆R < is lower than 0.3. The efficiency is estimated as a
function ofη andpT of the true electron.

The thresholds having an overall efficiency correspondent to the loose and tight standard cut-based identification
are listed in Table 2. The categorization used in the likelihood definition described in Sec. 3.2 (and in [1]) is not
the same of the category based cut electron identification described in [7], but the overlap of the populations of the
different categories is very large and they can be considered equivalent for our purposes.

Identification efficiency
Loose: r > 0.06 97%
Tight: r > 0.81 80%

Table 2: Efficiency of electron identification on reconstructed electrons in aW (eν)+jets sample for two chosen
thresholds on the likelihood ratior. The thresholds have been chose to reproduce the efficiencies of the standard
category cut based identification onW → eν events.

The efficiency of reconstruction only, loose category cut-based identification, loose and tight likelihood identifica-
tion as a function ofη andpT of the true electron are shown in Fig. 12.
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Figure 12: Efficiency of electron reconstruction (red line), loose category-based identification (blue line), loose
and tight likelihood-based identification (pink and cyan lines, respectively). The efficiency of identification is
cumulative with reconstruction.

It is clear that, when requiring tight identification, the electrons in the ECAL inter-module cracks are suppressed.
This can be due to the fact that they are here considered as showering electrons. A more detailed study of the
electron identification variables for crack electrons is needed. Outside cracks the overall efficiency is quite uniform
both in barrel and endcap. The combined efficiency of electron reconstruction and identification is 85% atpT ∼ 20
GeV/cand reaches 90% atpT = 40 GeV/c.
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6.2 Electron mis-identification

We estimate the electron mis-identification rate as the probability for an object which is reconstructed as a calorime-
ter deposit with a pointing track to be reconstructed and identified as an electron. In this work calorimetric jets
(reconstructed with IterativeCone with∆R = 0.5) are chosen as these loose objects. Since the samples ofQCD
jets available in Summer08 production so far are enriched ofelectro-magnetic component, they are not represen-
tative of the generalQCD population6). We therefore use a jets sample coming fromW+jets events, where we
discard the jet matching the generated electron fromW .

The mis-identification rate is defined as the ratio

f(jet → fake electron) =
#jets matching electron (l)

#reconstructed jets (d)
, (4)

The numerator (l) is defined as the number of reconstructed jets that match a reconstructed (and eventually, iden-
tified) lepton withpT > 10 GeV/c (calledl-objects). The denominator (d) is the number of reconstructed jets
(calledd-objects). The jets are required to lie inside ECAL acceptance (| η |< 2.5) and have a transverse momen-
tum pT > 10 GeV/c. The electron is considered matched with the jet if the angular distance between the two is
∆R < 0.3.

We show the electron mis-identification rate as a function ofη andpT (uncorrected) of the jet closest to the fake
electron (in terms of∆R) in Fig. 13. This probability is described as a function of the fakeable object to obtain
from data the number of mis-reconstructed electrons in a given analysis. The latter can be evaluated as the product
of the number of reconstructed jets times the probability ofbeing identified as an electron, in the specific (η, pT )
region.
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Figure 13: Electron mis-identification probability as a function of η (left) andpT (right) of the closest jet to the
fake electron. The probability is estimated after the reconstruction (red line), loose category-based identification
(blue line), loose and tight likelihood-based identification (pink and cyan lines, respectively).

With the same identification efficiency on electrons, the likelihood algorithm provides about half fake identified
electrons than the cut-based approach atpT ∼ 20 GeV/c, reaching a factor 3 of reduction forpT > 50 GeV/c.
Equal or worse fake rejection is obtained in the lowpT region. This can be attributed to the stronger energy
dependence of the electron identification variables for lowpT electrons. A better description of the PDFs for low
momentum electrons is then needed.

The average probability for a jet with uncorrectedpT > 20 GeV/c to be reconstructed and identified as an electron
with the loose likelihood criterion is about 3%. This reduces to 0.4% if the tight likelihood identification is applied.

There is a strong dependence of the mis-identification probability on η of the closest jet, being much higher in the
transition region between the barrel-endcap ECAL cracks.

A full electron identification should consider also electron isolation that provide a further order of magnitude
reduction of fakes from jets. The isolation and identification criteria should be optimized analysis by analysis (ex.
[?]). The proposed loose and tight thresholds are given only asan example.

6) More general samples ofQCD jets are being produced with MadGraph matrix-element generator.
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7 Miscalibration and Misalignment Effects
In the CSA07 Monte Carlo production, the same processes ofW+jets andZ+jets have been reconstructed with
ideal detector conditions and with mis-alignment and mis-calibration scenarios correspondent to the detector
knowledge after 10pb−1or 100pb−1of integrated luminosity. We have worsened the 10pb−1 scenario con-
volving the electron identification distributions with a further Gaussian smearing. We evaluated the efficiency on
prompt electrons fromW+jets events using this worst case scenario PDFs and compared with ideal conditions.
The efficiency variation is about 0.1% withpT > 15 GeV/c(while is larger for lowerpT , 0.5%), showing the
robustness of the algorithm for sufficiently high momentum electrons.

We plan to further study these effects, as well as the effectsof the limited knowledge of the tracker material budget,
when the Monte Carlo samples of the Summer08 production are re-reconstructed with different scenarios.

8 Conclusions
We described the definition of a likelihood based electron identification, defining the input variables and the way
they are combined in the likelihood ratio.

We described a strategy to estimate the PDFs of the electron identification variables both for electron particle
hypotesis and jet hypotesis on data control samples. These distributions can be extracted on the first hundreds
pb−1, considering the statistical error only.

We estimated the performances of the proposed method in terms of efficiency on prompt electrons fromW → eν
decays and of the mis-identification probability of a jet as an electron. The performances are given as a function of
the pseudo-rapidity and the transverse momentum.

A loose and tight selection on the likelihood ratio have beenproposed, only as examples, with efficiencies of about
97% and 80%, respectively, onW → eν electrons. The correspondent mis-identification probability, including
electron reconstruction and identification for a jet is about 3% and 0.4% in average for electrons withpT > 15
GeV/c, for the loose and tight identifications respectively.

We checked the robustness of the algorithm with respect the mis-calibration and mis-alignment scenarios with the
CSA07 Monte Carlo production. Further studies has to be performed on the effect of limited knowledge of the
CMS detector with the first recorded data when the Summer08 Monte Carlo samples considered in this analysis
will be re-reconstructed using different conditions with respect the ideal one.
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