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Abstract

We describe a likelihood-based algorithm to perform the identification of electrons with the CMS
experiment. The observables used in the likelihood function are presented, focusing on the discrim-
ination between real and fake electron candidates coming from mis-identified jets. We describe the
control samples and the strategy to define the probability density functions on data. Finally we evalu-
ate the performances of the electron identification in terms of efficiency and mis-identification rate as

a function of the kinematics of the electrons.
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1 Introduction

In this note we present a likelihood approach to the eledttentification in CMS. We put the emphasis on the
identification of electrons in the momentum rarige: p; < 80 GeV/¢, which is the range relevant for Standard
Model Higgs boson searches (.6l — ZZ* — ete ete” andH — WW* — etve v) and for some
measurements with the first LHC data. Examples are the nerasut of the cross section gf+jets and the more
challengingV +jets.

The electron identification variables we use as input of kelihood function have been extensively described
elsewhere [1] and widely used in CMS analysis. The identificaalso profits by sub-dividing the electrons in
classes according to the fraction of energy lost in the ggsaough the tracker material. The possibility of large
bremsstrahlung emissions introduces non-Gaussian flismigsaof the calorimetry and tracking measurements,
so different classes can have different ECAL-tracker paste We consider these differences in the likelihood
function.

We present the strategy to determine the probability deffisitctions of the electron identification variables on
data control samples with the first recorded data, for bathadiand background hypotheses.

We finally discuss the performances of the identificatioreimis of efficiency on electrons frol — ev decays
and of background mis-identification probability (fromggt

Some results on the effects of ECAL mis-calibrations anckieamisalignment in the LHC start up conditions are
discussed, based on Monte Carlo events 038807 production.

2 Monte Carlo Datasets

The datasets used in this study come from different MontéoGamples. The events produced with different
generators are passed through the full simulation of the @&lSctor response, that relies on the on standard
CMSSW software. For most of the results presented her8uherer 08 Monte Carlo production was used. The
used samples are:

W +jets MadGraph matrix-element generator)

Z+jets MadGraph matrix-element generator)

tt+jets MadGraph matrix-element generator)

QCD jets, enriched in e.m. fraction, for thg- bins of the leading parton:

— 20 < pr < 30 GeV/e,
— 30 < pr < 80 GeV/e,
— 80 < pr < 170 GeV/e

At the moment of the preparation of this note, the samplesrezenstructed with the CMS software release
CVBSW2_1_8 with ideal conditions, while re-reconstruction with diféat mis-alignment and mis-calibration
scenarios are not yet available. For this reason, the affabie dispersion of the inter-calibration and alignment
constants expected for integrated luminosities-@d and 10pb~! are estimated using tf@A07 Monte Carlo
production reconstructed with releaSKESW1 6 _7.

3 Input Variables

This section describes the electron identification vaeskntering the likelihood function, and the classification
used to sub-divide electrons in categories with differématracteristics (and different purities). The set of vadab
used in this algorithm is the same described in the note [h]chvare well established ones. Large attention is
paid to the ECAL cluster shape variables, which are veryatated among them since they all describe the width
of the e.m. deposit of the electrons. Only a limited set ofekisting ones has been chosen.



3.1 Electron Classification

The population of the reconstructed electrons is dividéal distinct classes, taking into account the amount of the
bremsstrahlung and the energy loss in the passage of thieelgzrough the tracker material. This classification is
used to account for non-Gaussian sources of fluctuatiorieedt CAL supercluster energy and tracker momentum
measurement, and it also results suitable to distinguistditfierent track-supercluster patterns with consequent
different performances of the electron identification. Ttnar, mutually exclusive, electron classes are described
in the note [1]. Here we give only a brief description of thepperties of each class:

e golden electrons: this class represents the most precisely measured electutrich are least affected by
bremsstrahlung and have a good track-supercluster matod pattern in the ECAL is characterized by a
single “seed” cluster.

e hig brem electrons: this class contains the non-golden electrons charactebye single “seed” cluster in
ECAL, but with a large fraction of the initial energy radidteery early or very late in the tracker, resulting
in the simple energy deposition in the ECAL.

e narrow electrons: this intermediate class contains electrons which stileteasingle “seed” cluster in ECAL,
lower bremsstrahlung that the ones belonging to the big lmees, but have a relaxed track-supercluster
geometrical match.

e showering electrons: this class contains the electrons which are badly measduedp an early radiation of
a high amount of the electron energy, resulting in a supstetumade of multi sub-clusters.

The fraction of electrons in a given category is estimatecaample of electrons frofi’ decays having a
transverse momentu2d < pr < 50 GeV/e. We also estimate these fractions for jets mis-recongtcdues
electrons in a sample 6% +jets with the jet in the same momentum range. The resultstaren in Table 1. We

electrons | jets

golden 17% 7%
big brem 5% 0.5%
narrow 8% 0.5%

showering 70% 92%

Table 1: Population of the four electron classes for reattedas coming fromiV decays, having a transverse
momentun20 < pr < 50 GeV/c and for fake electrons i/ +jets sample in the same momentum range.

did not performed a dedicated study of the electrons falimthe ECAL inter-module cracks and in the larger
crack between the ECAL barrel and endcap and we treat thehoassng electrons.

Most of the jets mis-reconstructed as electrons are cladsa§ showering, while very few populate the big brem
and narrow classes. This makes difficult to model the prdibalbiensity functions PDFs) of variables for the
two intermediate classes using the first hundngeis' of integrated luminosity. For this reason we merge the first
three classes in the list above, characterized by havinggescluster in the ECAL, in a unique class, which we
define asmon-showering. In Fig. 1 we show the relative population of each class fat etectrons and jets as a
function of the candidate andpr. For real electrons the fraction of showerings is propogldo the amount of
tracker material crossed by the electron, and thereforgepts strong variations alomg it is quite constant with
the transverse momentum, at leastjer> 15 GeV/c. The fractional radiation length/ X, as a function of; is
shown in Fig. 2 for the different sub-detectors in front of J?2].

3.2 Electron ldentification Variables

In this section we discuss the variables used to estableshdmpatibility of the reconstructed electron candidate
with the track and supercluster pattern expected from desiagl electron. The distributions of these variables
(separately for barrel and endcap, non-showering and sirgveandidates) are used as inputs for the likelihood
algorithm. Since the cross-correlation between the viagaplays an important role in the performances of the
algorithm we checked that the proposed set has correlatimai enough both for signal and background.

The variables used in the likelihood algorithm coincidehwtihe ones described in [1]. A cut-based electron
identification exploiting the same variables has been sitely used in many analyses (el//Z+jets ratio P]
andH — WW*, [4]), both performed on the CSAQ7 Monte Carlo samples).yTdre:
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Figure 1: Fraction of candidates classified as showeringamks for true electrons froud or for mis-reconstructed
jets as a function of (left) andpr.
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Figure 2: The fractional radiation lengity X, as a function of for the different sub-detectors in front of ECAL.

e ratio of the energy of the supercluster seed over the trackentum at the last tracker lay&sced /pout

e geometrical matching between the track parameters at thi@ition vertex extrapolated to the super cluster
and the measured super cluster positiofy, | = |nsc — 75" |and| Agin | = | dsc — ¢5P

mn

e ratio of the energy deposited in the HCAL towers in a cone diusAR = /A¢? + An? = 0.1 centered
on the electromagnetic supercluster position over therslyster energyH /E

e ratio of the energy sums over thex3 and 5<5 matrices centred on the highest energy crystal of the seed

cluster, o /> o
e the width of the ECAL cluster along thedirection: o2, = > (1 — 7]Seed)2Eiid' We didn’t applied

crystal

the correction to account different crystal geometry inghdcap¥.

The distributions of the identification variables are mauéhe signal case with candidate electrons coming from
the decay of & boson probe), when the other electron of thgis selected as a good electrdag). We describe

in Sec. 4.2 the selection of the tag and probe objects andridte@y to obtain the signal PDFs from that dataset.
As a background we consider the hadrom$ (K *,...) inside jets which are reconstructed as electron caels
due to a some energy release in the ECAL of the hadron itgeif, the neighbouring particles inside the jégke
electrons). Jets are produced with high rate in QCD processes anditdasine of the main backgrounds for
many analyses. Again, we describe a control sample on d#tankich characterizing the jet PDFs in Sec. 4.2.

U We plan to apply corrections for endcap when we make the PDFs with thesamples of the Summer08 Monte Carlo
production.



The possible correlation between electron identificatiooh theisolation variables has to be accounted for and the
study of the performances of the electron identificatiomecaie independent by the isolation criteria applied in
the electron selection. As an examplg/ E can depend on the jet multiplicity in the event. We therefomasider
only loose isolated candidate electrons, both for signdlackground.
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Figure 3: Distribution, normalized to unity, of the electrinlentification variables used as input in the likelihood
for barrel. The signal distributions are split according tiassification described, the background ones are un-
split, as they enter the likelihood. TOf.ccd/pout(left), H/E(right). Middle: An,(left), Agi,(right). Bottom:

ZQ / 225(|eft)! Unn(right).

Fig. 3 and Fig. 4 show the discriminating variables used pstim the likelihood algorithm for barrel and endcap
electrons, respectively. For simplicity, we give only theriables for the kinematic bipr > 15 GeV/e. The
double peak in thé\n;,,variable for endcap electrons is supposed to be correlatbadive opposite tilt of crystals
in the two ECAL endcaps. The electrons with> 0 have mainlyAr;, > 0 and vice-versa.

4 Extraction of PDFs from data control samples

In order not to rely too much on Monte Carlo description of ¢ectron identification variables, the distributions
can be extracted from data control samples both for sigrf@amnbackground. In the following we describe the
control samples that can be used on data and the strategy to
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Figure 4: Distribution, normalized to unity, of the electrilentification variables used as input in the likelihood
for endcap. The signal distributions are split according ¢hassification described, the background ones are
unsplit, as they enter the likelihood. ToP:ecd/Pout (I€FL), H/E(right). Middle: An, (left), Agi,(right). Bottom:

Zg / Z%(Ieft), Jm,(right).

4.1 Electron PDFs from Z decays

A quite clean electron control sample can be extracted bytidecays. The production of thé boson can be
associated to the production of jets. The cross section®ptiocess decreases roughly as a power,ofith the
jet multiplicity. We use theZ+jets Monte Carlo sample produced with MadGraph matrixaelet calculator.

To extract a clean sample of electrons to model the PDFs afldutron identification variables we use thg and
probe method. This method is also used to estimate the electramsétiction and identification efficiencies [5].

This method consists of selecting an electron with someitguaiteria applied {ag) and look for another one in
the event which, combined with the tag, form an invariantsrzese to the one of th# (probe). On the probe
electron we study the electron identification variablesoriter to have the largest electron sample, if the electron
selected as a probe also fulfill the quality criteria for g theg roles are inverted and the first electron is used as a
probe.

We require at least two reconstructed electrgise{MatchGsfElectron) in the even?) with:




e |n| <25

o pr > 5GeV/e
If more than 2 electrons are selected in the event, we chbeggb which give the invariant mass closest to the
nominal mass [6]. To clean up the sample we apply loose ffigatibn and isolation criteria on the tag electron:

e |oose category based electron identification, defined in [7]

e loose tracker isolationy_ p/pSiectro < 0.20 in a cone ofAR < 0.4 around the electron track
Since in a typical analysis the electron identification iedusogether with isolation criteria, we also apply the

same loose isolation on the probe electron. This requiréchees not affect too much the electron identification
variables on true electrons, while we expect to have moeeedin background (mainly i/ E).

Even if the background under th& mass peak is expected to be small, still some contaminatioradse and
distort the shapes of the signal PDFs. We apply a statigiazidground subtraction which makes use of the Zull
lineshape extracted on data. In order to do this, we conaittsyse requirement on the di-electron invariant mass:

e 40 < Mo < 110 GeV/c®
and we assign to any event the probability to be signal or ¢rackd through a maximum likelihood fit to the
di-electron invariant mass.
We model the invariant mass for signal with a Cruijff functi], defined as:
(x —m)?

207 )5+ ar/r(z —m)

flzym,op,0p,ar,ar) = N X exp | — 5 1)
where thes;, anday, (g andag) corresponds to resolution and tail parameters of theibligion forz — m <

0 (x — m > 0). The use of this function allows to describe the tail in thstribution,induced by the mis-
reconstruction of the energy of the electrons, due to pteskbkage in the calorimeter or to large bremsstrahlung
emission in the tracker matertal

We apply the selection to thB+jets Monte Carlo sample, correspondent to 380! of integrated luminosity. If
both electrons are selected as tag, then the two probestketdataset with the same invariant mass.

We apply the same selection on the samples that can be cretsiaethe most relevant for tierjets process:

o WHjets
o i{i+jets

e QCD di-jets

For W+jets andtt+jets we apply the selection only on a subset correspondentuminosity of 30b~!, as for

the signal. Instead we use all the available Monte Carlistitad for QCD di-jets. We consider the selected events
in these samples as a unique background, and we parametexideelectron invariant mass as a second order
polynomial. The distribution of the invariant mass for tag4probe pairs is shown on Fig. 5, with the result of the
fit superimposed, both for signal and background components

In order to apply our strategy on a sample similar to the oaeithselected on data, we merge together the signal
and background events to get 308~ 'equivalent data. We then perform an unbinned maximum likel fit to

this dataset fixing the background shape to Monte Carloedbdving the signal lineshape floating as well as the
signal and background yields.

As output of the fit we get the signal and background yieldsyel as the signal Cruijff function parameters,
consistent with the expected values. The fit to the dataslitaple is shown in Fig. 6.

2 |n the Monte Carlo samples we used the trigger bits are not saved, somverdiglired any trigger to be fired. The plan, as
soon as the information is saved, is to require the single electron trigger path

3) The mean and the., r can be slightly biased due to the choice of the best electron pair, but wkezhthat this does not
shrink the background to peak near thienass peak.
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Figure 5: Distribution of the tag and probe electrons iraarimass forZ +jets events (left) andili +jets, tt+jets
events,QC D events (right) with the result of the fit superimposed. Thapdrin thee™e™ invariant mass in the
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Figure 6: Distribution of the tag and probe electrons iraatrimass for a data-like merged sample formed by
Z+jets, W+jets, tt+jets andQC D events, for an integrated luminosity of 30!, with the result of the fit
superimposed. The solid (dashed) line represents thegtimjeof the signal+background (background only)
likelihood, as obtained from the fit result. The bump arouﬁdﬁﬁa\//c2is due by theZ generation threshold.

The value of the likelihood is then used to compute the sigiatight [8], which is proportional to the probability
for that event of being signdl. We form the distributions of electron identification véiies weighting each event
with its signal ;Weight. In this way we are able to extract the signal PDFs directlydata with a statistical
subtraction of background which fully exploit all the dieetron invariant mass shape. We also do not lose any
statistics as if we would have done a background subtraét@n the sidebands of th& mass peak. We call
these distributiongPlots. They have the characteristic that the integral of theiBistion correspond to the fitted
number of signal events in the dataset.

We compare in Fig. 7 the distributions of the electron ida@tion variables, for simplicity for barrel and endcap
together, and low and high bins together, as extracted from pWfejets Monte Carlo sample and as extracted
on data-like sample after the background subtraction wigh Plots averaging technique. The proof is limited by

4 The value of signal and backgrounili’eight can be negative to account for statistical fluctuations of the background
component.



the fact that we used the same sample to parameterize tha digglectron mass shape and to form the data-like
sample, but it shows that the subtraction of the backgrosisatisfying. The signal PDFs can be then defined on
data with the first hundreds pb~'of integrated luminosity/.
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4.2 Jet PDFs from QCD di-jets andiV/ +jets

In the LHC environment jets are produced with a huge crostisedeing driven by strong coupling, with respect
the electro-weak processes. The main process is the prodwétdi-jets events. It can be used as a high statistics
control sample to estimate the PDFs of the electron ideatiin variables for electron fake candidates coming
from jets.

The recording of di-jets events in the CMS data acquisitiodriven by a dedicated jet trigger, which is prescaled
to satisfy the HLT rate requirements due to the very high. ratee cross section of QCD jet production wiih

%) The uncertainties on them are statistical only.



of the leading parton betwe@® < pr < 170 GeV/c is about 0.5 mb. The productions Bf or Z bosons with
associated production of jets are electroweak processmgfore the cross sections are much lower (respectively
18 nb and 1.5 nb). Assuming that the jet trigger efficiencyoisghly similar for a QCD di-jet event and for a
W (Z)+jets event, then the contamination of electrons fromamdobsons in the jet triggered sample is of the order
of 0.01%. In order to model the PDFs for the electron iderdifan, at least one electron has to be reconstructed
and this requirement enhances the pollution of real elestfmmV +jets, V' being a vector boson. The electron
reconstruction efficiency is about 95%, while the probapfir a jet to be reconstructed as an electron is order of
10% in the worst case (jets pf > 20 GeV/c), as will be discussed in Sec. 6.2. The PDFs are built alsainieg

that the reconstructed electron is loose isolated in thekéra This request has an efficiency of about 95% on the
signal, while reducing the QCD jets about of a factor 50%hétrefore further lowers the average purity of the jet
trigger sample to the order of fraction of percent.

The V+jets contamination depends on the fake electron specsintg i.e. thepr spectrum of jets falls quicker
than that of real electrons. In the following we look for tkeadling jet according to itsr (which plays the role of
the tag jet) and we define the probe as a reconstructed eleghich is back-to-back to the tag jet in the transverse
plane. If more than one probe electron is reconstructed, wese the furthest one from the leading jet. The
tag jet is reconstructed with the IterativeCone algorithithwh R=0.5; it's required to have uncorrectpg > 30
GeV/cand|n| < 25, to roughly emulate the trigger. In Fig. 8 we show the caoritation of electrons froni +jets
and Z+jets events in the selected QCD sample as a function of #teedkectrony andpr. Such contamination

is defined as the number of probe electrons matching a reatahein W (2)+jets events over the total number
of probes reconstructed WY +jets, Z+jets and QCD events. The background contamination in thB Qéhtrol
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Figure 8: W+jets (top) andZ+jets (bottom) contamination in the proposed backgrounatrob sample. The
contamination is given as a function of the fake electrordiaten (left) andpr (right).

sample is better than 1% in the full range. The purity can lodhéun enhanced exploiting the kinematics of the
events. As an example the following requirements can beaexppl

e the uncorrected missing transverse energy of the evenusresl to beM ET < 20 GeV

o the angleA¢ = |piagjer — Geicctron| DEIWEEN the tag jet and the probe electron should be closgdr.
A¢ < 2.5) for a back-to-back di-jet event, while the directions assl correlated in thB +jets events due
to theWW — ev decay.

e the invariant mass between the tag jet and the probe elestron.;—cicctron < 60 GeV/c2
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The first and the second requirements can be used to suppeesaount ofl/ +jets events. The proposed threshold
on missing transverse energy is chosen as the complemeamtarfpr thell/ +jets selection in [3]. The efficiency
of this requirement is about 75% for QCD jets events, while #bout 10% foll/ +jets events. With this selection
considered, the pollution df +jets events is of the order 8fx 10~%. The Z+jets sample is dominated by the
Z+0 jets where the two electrons are back-to-back and sinedeatron is always reconstructed as a jet thg
distribution is highly peaked. These events can be anywppregsed to a negligible level applying the invariant
mass based criterion.

The distributions of missing transverse eneuyy; and di-electron invariant mass for the QCD di-j@f+jets and
Z+jets are shown in Fig. 9.
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Figure 9: Distribution of the missing transverse energyp,(teft), A¢ (top, right) and di-electron invariant mass
(bottom) for the QCD di-jet|¥V +jets andZ +jets.

Examples of processes which produces fake electrons aredp{eis (fake background fdi/ +jets) andi¥ +jets

(for dibosons, exWW and H — WW*). We compare the electron identification variables for faleetrons
reconstructed in the QCD di-jet samples and the ones racated in thell +jets samples in Fig. 10 and 11 for
barrel and endcap, respectively. No significant differaaceen in most of the variables for the two samples, only
the cluster shape variables seem to be slightly affectedwiWenvestigate if the differences in the cluster shape
variables are due to the quark content of the jets in furthetiss.

5 Likelihood Function Definition

We described the observables that can be used to discreniediveen real electrons and hadrons in Sec. 3.2.
Probability Density Functions (PDFs) are constructed &mheof them from control samples on data, as described
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in Sec. 4.2. Under the assumption of indepedent measureroktitese variables, they are combined to compute
the likelihoodLy, () for:

e two particle hypotesig = {e, jet},

e 4 kinematic bins
k = {(pr < 15GeV/¢;barrel), (pr > 15GeV/c; barrel), (pr < 15GeV/c; endeap), (pr > 15GeV/c; endcap) },

e 2 electron classes
¢ = {non — showering, showering}:

The likelihood function is defined as the product of the ngiriable PDF®, .(x; £)):

Lk,c(g) = Pk,c(Eseed/poutE f) ’ Pk,c(H/EQ f) ’ Pk,C(Anin; 5) :
Pk7c(A¢in§ 5) . ,Plac(z:g / 225; f) . ,Plc,c(ann; 5) (2)

Weighting the individual likelihoods with thea priori probabilitiesp,, we define the likelihood ratio as:

_ peL(e)
"= PeL(B) + pjetL(jet) (3)

12




S0
210

—— jets from QCD

au.

—— jets from QCD

—— jets from Wjets

10"

10°

—+

=
°©,

Oi e SARRLL

i
5]
IS

-
N
w
IS
o
o
o
o
=)
N
o
o
S
o
o
>
o
o
@

F —— jetsfrom QCD —— jets from QCD

au.
au.

—— jets from Wejets

—— jets from Wjets

P T I T I I A I S S VR S SV B SR
-0.02 -0.015 -0.01 -0.005 0 0.005 0.01 0.01

.10t
—— jets from QCD 2

au.

—— jets from Wjets

10°

10%

10*

10° 1
r 10°
el b L e L P S RS H SR B
05 055 06 065 07 075 08 085 09 095 1 0 0.01 0.02 0.03 0.04 0.05
SglS 55 o,, (rad’)

Figure 11: Distribution, normalized to unity, of the elextridentification variables used as input in the likelihood
for fake electrons in endcap reconstructed in a sampld/ejets (blue line) and QCD di-jets (red dots). The
distributions are for all the electron classes togethem: TBsccd /Pout(l€ft), H/E(right). Middle: Amn;,(left),

A¢in(right). Bottom:> ", / >, (left), o, (right).

Since the a priori probabilities depend on the trigger sg#tj and these are not yet defined, we set them all equal
to 1, i.e. assuming no a priori knowledge.

This likelihood ratio can be used as an electron identificatiariable asking a reconstructed electron to satisfy a
given threshold om, which may vary between 0 and 1.

The variables that enter the likelihood definition are thesoused in the cut based identification described in [1].
The product of the single PDFs in Eqg. 2 can be strictly intetgnt as a probability only in the hypotesis of the
variables being uncorrelated. We found that the correlatimong the used electron identification variables
is at the percent level for both the showering and non-shiogezlectrons (exceptions are: about 6% between
Esced/Pout @and) 4 / >, for the non-showering electrons and 15% betw&gn, /poutando,,,for the showering
ones). Given this level of correlation, we decided to sgkk@ll the variables of [1] in the likelihood.

In order to estimate the likelihood algorithm performanags define two standard thresholds, one giving about
97% overall efficiency oV — ev events [oose) and another with 64% efficiency on the same samipggat).
These efficiencies have been defined to be the same of theastartt based electron identification on the same
events [7].

The performances are estimated in terms of efficiency ondleetrons and rejection of fake candidates. These
guantities are shown in terms gpfandp of the electrons or of the faking jet, respectively.
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6 Algorithm Performances

We study the electron efficiency and mis-identification & tikelihood algorithm on the Monte Carlo samples
in the Summer08 production, using the PDFs currently avkglan the software releas@VSSW2_1 12, which
were done using thESA07 Monte Carlo production. The PDFs are slightly changed wagpect those samples,
mostly in H/E variable, since in the newest release the zero-suppresstd@AL is applied, thus removing the
tail at negative values i/ / E. This can bring to a sub-optimal performance of the algaritMore important, this
is also a proof of the stability of the algorithm with respecsmall changes of the input variables.

6.1 Electron identification efficiency

We evaluate electron identification efficiency bn+jets events, witll — ev prompt decay. We define the
efficiency as the number of reconstructed and identifiedIMtehGsfElectrons with respect the true electrons
coming from the prompt decay of tH& which are generated ir2.5 < n < 2.5 and have @ > 10 GeV/ec.

A reconstructed electron matches the generated one if tp@amdistance between the direction of the true one
and the reconstructed GSF track extrapolated at vextBx< is lower than 0.3. The efficiency is estimated as a
function ofn andp of the true electron.

The thresholds having an overall efficiency correspondettie loose and tight standard cut-based identification
are listed in Table 2. The categorization used in the likddhdefinition described in Sec. 3.2 (and in [1]) is not
the same of the category based cut electron identificatisorited in [7], but the overlap of the populations of the
different categories is very large and they can be considegeivalent for our purposes.

Identification | efficiency
Loose: r > 0.06 97%
Tight: » > 0.81 80%

Table 2: Efficiency of electron identification on reconstagtelectrons in &/ (ev)+jets sample for two chosen
thresholds on the likelihood ratia The thresholds have been chose to reproduce the effickeofctbe standard
category cut based identification & — ev events.

The efficiency of reconstruction only, loose category cagdal identification, loose and tight likelihood identifica-
tion as a function of) andp of the true electron are shown in Fig. 12.
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Figure 12: Efficiency of electron reconstruction (red linepse category-based identification (blue line), loose
and tight likelihood-based identification (pink and cyameB, respectively). The efficiency of identification is
cumulative with reconstruction.

It is clear that, when requiring tight identification, theetrons in the ECAL inter-module cracks are suppressed.
This can be due to the fact that they are here considered agshg electrons. A more detailed study of the
electron identification variables for crack electrons isdel. Outside cracks the overall efficiency is quite uniform
both in barrel and endcap. The combined efficiency of eleatoonstruction and identification is 85%pat ~ 20
GeV/cand reaches 90% afr = 40 GeV/ec.
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6.2 Electron mis-identification

We estimate the electron mis-identification rate as theaibity for an object which is reconstructed as a calorime-
ter deposit with a pointing track to be reconstructed andtifled as an electron. In this work calorimetric jets
(reconstructed with IterativeCone withR = 0.5) are chosen as these loose objects. Since the samplgs bf

jets available in Summer08 production so far are enrichezlesftro-magnetic component, they are not represen-
tative of the general)C' D populatiory). We therefore use a jets sample coming friritjets events, where we
discard the jet matching the generated electron ffgm

The mis-identification rate is defined as the ratio

#jets matching electron (1)
#reconstructed jets (d)

f(jet — fake electron) = 4)
The numeratorij is defined as the number of reconstructed jets that matctomseructed (and eventually, iden-
tified) lepton withpr > 10 GeV/c (calledi-objects). The denominatod) is the number of reconstructed jets
(calledd-objects). The jets are required to lie inside ECAL accegeafm |< 2.5) and have a transverse momen-
tumpr > 10 GeV/c. The electron is considered matched with the jet if the aargiistance between the two is
AR < 0.3.

We show the electron mis-identification rate as a function ahdp (uncorrected) of the jet closest to the fake
electron (in terms oA R) in Fig. 13. This probability is described as a function g fakeable object to obtain
from data the number of mis-reconstructed electrons ineganalysis. The latter can be evaluated as the product
of the number of reconstructed jets times the probabilithehg identified as an electron, in the specificir)
region.
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Figure 13: Electron mis-identification probability as adtion of n (left) andpr (right) of the closest jet to the
fake electron. The probability is estimated after the rstmttion (red line), loose category-based identification
(blue line), loose and tight likelihood-based identificati{pink and cyan lines, respectively).

With the same identification efficiency on electrons, thelltkood algorithm provides about half fake identified
electrons than the cut-based approacpsat~ 20 GeV/¢, reaching a factor 3 of reduction fer > 50 GeV/ec.
Equal or worse fake rejection is obtained in the lpy region. This can be attributed to the stronger energy
dependence of the electron identification variables forggwelectrons. A better description of the PDFs for low
momentum electrons is then needed.

The average probability for a jet with uncorrected > 20 GeV/c to be reconstructed and identified as an electron
with the loose likelihood criterion is about 3%. This redsib@ 0.4% if the tight likelihood identification is applied.

There is a strong dependence of the mis-identification fmitiyaon  of the closest jet, being much higher in the
transition region between the barrel-endcap ECAL cracks.

A full electron identification should consider also eleatigolation that provide a further order of magnitude
reduction of fakes from jets. The isolation and identificatcriteria should be optimized analysis by analysis (ex.
[?]). The proposed loose and tight thresholds are given oninasxample.

% More general samples 6§C'D jets are being produced with MadGraph matrix-element generator.
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7 Miscalibration and Misalignment Effects

In the CSAO7 Monte Carlo production, the same processé¥ tfets andZ+jets have been reconstructed with
ideal detector conditions and with mis-alignment and naibbcation scenarios correspondent to the detector
knowledge after 1@b~'or 100 pb~'of integrated luminosity. We have worsened thepl0! scenario con-
volving the electron identification distributions with arfiluer Gaussian smearing. We evaluated the efficiency on
prompt electrons fromiV +jets events using this worst case scenario PDFs and cothpétite ideal conditions.
The efficiency variation is about 0.1% wily > 15 GeV/c¢(while is larger for lowerpr, 0.5%), showing the
robustness of the algorithm for sufficiently high momentdate&ons.

We plan to further study these effects, as well as the eftdttee limited knowledge of the tracker material budget,
when the Monte Carlo samples of the Summer08 productioreareconstructed with different scenarios.

8 Conclusions

We described the definition of a likelihood based electr@nidication, defining the input variables and the way
they are combined in the likelihood ratio.

We described a strategy to estimate the PDFs of the elealntification variables both for electron particle
hypotesis and jet hypotesis on data control samples. THes#udtions can be extracted on the first hundreds
pb~1!, considering the statistical error only.

We estimated the performances of the proposed method irs tefrefficiency on prompt electrons froW — ev
decays and of the mis-identification probability of a jet agkectron. The performances are given as a function of
the pseudo-rapidity and the transverse momentum.

A loose and tight selection on the likelihood ratio have bgeposed, only as examples, with efficiencies of about
97% and 80%, respectively, dv — ev electrons. The correspondent mis-identification prolgghbihcluding
electron reconstruction and identification for a jet is al®¥% and 0.4% in average for electrons wjth > 15
GeV/c¢, for the loose and tight identifications respectively.

We checked the robustness of the algorithm with respect theatibration and mis-alignment scenarios with the
CSAO07 Monte Carlo production. Further studies has to beopmd on the effect of limited knowledge of the
CMS detector with the first recorded data when the SummerO8t&lGarlo samples considered in this analysis
will be re-reconstructed using different conditions widspect the ideal one.
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