Muon ID for RA4 - Follow up

Reference Analysis - MuonID

Muon Selection

- Below are initial muon selection cuts that can be used as a reference for "Synchronization" of analysis codes.
- These cuts are taken from Finn's talk along with the V+jets baseline cuts.

Quantity	PAT Object and Member Function	<u>c</u>	ut	<u>Comment</u>
Mu type	pat::Muon => isGood("GlobalMuonPromptTight")	GlobalMuor	PromptTight	OK
p_T	pat::Muon => pt()	≥ 20 GeV		
abs(eta)	pat::Muon => eta()	≤ 2.1		OK
Rel. Isolation	pat::Muon => calolso(), ecallso(), tracklso(), pt()	< 0.1		
chi^2/dof	pat::Muon => combinedMuon()->chi2(), combinedMuon() ->ndof()	< 10		OK
abs(d_0)	pat::Muon => track()->d0 *	< 0.2 cm		OK
N hits	pat∷Muon => track()->num∨alhits()	≥ 11		OK
HCal E	pat::Muon => hcallsoDeposit->candEnergy()	< 6		
ECal E	pat::Muon => ecallsoDeposit->candEnergy()	< 4		

→ Improvement possible & necessary

See also:

http://indico.cern.ch/getFile.py/access?contribId=3&resId=0&materialId=slides&confId=57465

Muon pT Threshold (again...)

Most of the signal efficiency lost due to pT > 20 GeV

- → Go to pT > 10 GeV
 - Trigger OK
 - Reco OK
 - Backgrounds OK \rightarrow e.g. QCD killed by isolation, $\Delta \phi$

Comparison

```
RelIso ./.
TrkIso < 6 GeV
ECalIso < 6 GeV
HCalIso < 6 GeV
```

```
RA4:
RelIso < 0.1
TrkIso ./.
ECalIsoDep < 4 GeV
HCalIsoDep < 6 GeV
```

```
RelIso = SumIso = TrkIso + ECalIso + HCalIso
```

In the last presentation had a bug: *CalIso instead of *CalIsoDep

The *CalIsoDep cuts introduce an additional inefficiency of 5 - 10 %

Clean W + Jets Muon - Efficiency

Clean W + Jets Muon - Efficiency

Clean W + Jets Muon - Efficiency

Clean W + Jets Muon - Comparison

Summary MuonID

RA4 Cuts are not optimal for RA4/MU analysis

- > efficiency not flat, decrease where signal sits
- → difficult to invert cut, since many real muons (small pt) have rather high values of RelIso
- → additional ECalIsoDep/HCalIsoDep cuts destroy the advantage of RelIso at high pt

ACIIIA Cuts have same efficiency & comparable fake rate

- > flat in pt, significantly higher where signal sits
- → allows individual treatment of 3 types of isolation
- > no problems with QCD estimation/cut inversion

References:

Feb 26, 2009, "Baseline MuonID for SUSY selection", CM May 7, 2009, "Study of MuonID for RA4", CM

Jets

From the RA4 TWiki: Many people (including Aachen) are using iterativeCone5 Jets

Please note (HN):

"After consultation with PAGs and POGs, the JetMET group suggests to concentrate on just <u>one</u> clustering algorithm combination with first data, <u>siscone R=0.5</u>, and to <u>eliminate IC5</u> from the list of supported algorithms for physics analysis."

Proposal

Muon Selection

final

- Below are ipitial muon selection cuts that can be used as a reference for "Synchronization" of analysis codes.
- Tirese cuts are taken from Finn's talk along with the <u>V+jets baseline cuts</u>

<u>Quantity</u>	PAT Object and Member Function	<u>Cut</u>	<u>Comment</u>
Mu type	pat::Muon => isGood("GlobalMuonPromptTight")	GlobalMuonPromptTight	OK
p_T	pat::Muon => pt()	≥ 20 0e V > 10 GeV	
abs(eta)	pat::Muon => eta()	≤ 2.1	OK
Rel. Isolation	pat∷Muon => calolso(), ecallso(), tracklso(), pt()	≺ 0.1	
chi^2/dof	pat::Muon => combinedMuon()->chi2(), combinedMuon() ->ndof()	< 10	OK
abs(d_0)	pat::Muon => track()->d0 *	< 0.2 cm	OK
N hits	pat::Muon => track()->num∨alhits()	≥ 11	OK
HCal E	pat::Muon => hcallseDeposit >candEnergy()	≺6	
ECal E	pat::Muen => ecallseDeposit >candEnergy()	< 4	

TrkIso	pat∷Muon->trackIso()	< 6 GeV
ECalIso	pat::Muon->ecalIso()	< 6 GeV
HCalIso	pat::Muon->hcalIso()	< 6 GeV

+ JETS: sisCone5

Jet Energy Scale Issue

"Top box method" (see Talk from Walter Bender) requires W reconstruction

Distribution around 80.4 GeV? Fix this (see RA4 Twiki) @ 80.4 GeV?

$$\chi^2 = (M_{j_1 j_2} - M_W)^2 / \sigma_{jj}^2 + (M_{j_1 j_2 j_3} - M_t)^2 / \sigma_{jjj}^2 + (M_{W_t j_4} - M_t)^2 / \sigma_{\mu\nu j}^2$$

W Mass Peak in ttbar Events

Observe Shift of 7.8 GeV

JES for Gluons in ttbar Events

Summary JES

This study was triggered by a guy asking about a shift in W recontruction on HN and our own top box studies. Not everybody seems to be aware of this fact.

→ Should keep in mind this features when optimizing jet cuts, skimming, background estimation

Summary SUSYPAT

- We (Aachen) already switched to PATv2
- → SUSYPAT V5 not compatible with our Filler/Analyzer

However, our first check of SUSYPAT samples in May showed compatibility with our Analyzer - despite some missing information which is in now.

I am in contact with Mariarosaria concerning trigger information in SUSYPAT V6; I already sent the necessary cfg snippet.

