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1 Introduction

Identification of charged particles is crucial for hadron physics where measured particle yields,
spectra and correlations have to be compared to model predictions. It is also very important
for reducing the background of physics processes (e.g. in B-physics the decay B0

s → D∓
s K±; e/π

separation [1]; use for stau in gauge-mediated SUSY breaking models [2]; cleaning candidates of
resonance decays).

Silicon detectors can be employed for identification by proper use of energy deposit mea-
surements along the trajectory of the particle. In silicon there is practically no logarithmic rise
of specific energy loss, thus it can only be used below the minimum ionization region. Recent
studies show that five or even four layers of silicon allow to reach 10% resolution, using the
truncated mean method [2].

In CMS the high occupancy of silicon strips in central A+A collisions renders their inclusion
into particle identification particularly difficult. The use of silicon pixels alone allows to use
the same analysis for low multiplicity p+p, p+A and high multiplicity A+A events. (At the
same time it enables the reconstruction of very low p

T
particles, down to 200 MeV/c.) This is

a challenge at the same time, because a charged particle, defined by pixel hit triplets, has only
three hits. This fact prompts the development of a new method for the extraction of energy loss
information.

2 Energy loss estimators

There are several estimators which can represent a measured data sample. The mean is not a
robust one, because it is sensitive to large fluctuations. The median is already a better choice.

For probability density functions with long tails, like energy loss distributions, the method
of truncated mean has been developed. Here some percentage of the highest (and sometimes
lowest) E/x values are discarded and the remaining ones are averaged. While the method is
easily applicable, it has some problems, as well:

• When many detector channels are in overflow, the truncation does not work. This way
particles with low momentum are not separable (e.g. kaons and protons below 500 MeV/c).

• The distribution of the truncated mean estimator is not gaussian. It still has tails toward
higher energy deposits, reflecting the original nature of the probability density function.

• Its mean and its standard deviation is not calculable, these have to be extracted from
a multi parameter fit. It is disadvantageous when the distributions of the estimator for
different particles overlap (e.g. pions and kaons above 600 MeV/c).

• A particle has energy loss measurements from different regimes of silicon thickness (x). At
the same time the distribution E/x depends on x, so the truncation uses values belonging
to different distributions. That is why the extracted mean and its standard deviation
depends on kinematical variables (η and p

T
), the resulting distributions have to be refitted

for each phase space bin.

The method of maximum likelihood is a general framework for point estimation. It has
beneficial asymptotic properties: unbiased, gaussian distributed; efficient, reaches the Cramer-
Rao lower bound; it can be used for point and interval estimation; its distribution can be
calculated with help of the Fisher information matrix. These benefits come at a price: the
method needs a very good description of the probability density function (see Section 3). In
case of energy loss measurement the knowledge (calculation or measurement) of the conditional
probability distribution

P (y|βγ;x) (1)
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K L M
E0n [eV] 4033 241 17
Fn 2/14 8/14 4/14

Table 1: Effective binding energies E0n and oscillator strengths Fn for the K, L and the M-shell
in silicon, from [3].

is needed, where y is the measured ADC value, βγ = p/m belonging to the particle, and x is the
path of the particle inside the silicon. As it will be shown in Section 4, with some approximations
this conditional probability can be reduced to a simpler form

P (y|m) (2)

where m is the most probable value of the energy loss distribution.

3 Energy loss model

Here we follow the easily calculable model in [3]. The typical energy loss is

ξ(x, β) =
K

2
z2 Z

A
ρ

x

β2
(3)

where K = 4πNAr2
emec

2 ≈ 0.307 075 MeV cm2/mol; Z = 14 is the atomic number, A = 28.0855
is the atomic mass, ρ = 2.33 g/cm3 is the density, x is the thickness of the absorber; ze is the
charge, β is the velocity of the incident particle. For β = 1 and x = 0.03 cm silicon, ξ = 5.31
keV. Note that 1 ADC ≈ 0.5 keV.

The w(E) collision probability, the cross section, of the particle can be split in two parts:
a δ-function term describing resonance excitations and a truncated 1/E2 term due to Coulomb
excitations:

w(E) =
1

x

[

∑

n

mrnδ(E − E0n) + mCnE0nH(E − E0n)/E2

]

(4)

where H denotes the Heaviside function.

3.1 Resonant part

The average number of resonance collisions is

mrn = ξ
Fn

E0n

[

log
2mec

2β2γ2E0n

E2
0n + (h̄l)2

+
l2

γ2ω2
p

− β2

]

(5)

where l is defined by the equation

ω2
p

∑

n

Fn

l2 + ω2
n

=
1

β2γ2
, E2

0n = (h̄ωn)2 + (h̄ωp)
2Fn (6)

and the plasma energy

h̄ωp = 28.8

√

Z

A
ρ = 31eV (7)

The equation can be solved for l by bracketing the root followed by bisection. If βγ <
βγcrit ≈ 1.58 then l = 0 is taken. The distribution of energy loss for resonance excitations is
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poissonian, which can be replaced by a gaussian if mrn ≫ 1. The gaussian has an average ∆r

and sigma σr given as

∆r =
∑

n

mrnE0n ≈ 13.30ξ, σ2
r =

∑

n

mrnE2
0n ≈ 11.43keV · ξ (8)

The probability density function is

fr(∆r|∆r, σr) =
1

σr

√
2π

exp

[

− (∆r − ∆r)
2

2σ2
r

]

(9)

3.2 Coulomb part

The average number of Coulomb-type collisions is

mCn = ξ
Fn

E0n

(10)

The distribution function is given by the Landau distribution if mCn ≫ 1. The mean
excitation energy I = 169 eV is the logarithmic weighted average of the binding energies

log I =
∑

n

Fn log E0n (11)

The probability density function is

fC(∆C |ξ) =
1

ξ
φ

[

∆C

ξ
−

(

log
ξ

I
+ 1 − C

)]

(12)

where C = 0.577215 is the Euler-constant. The most probable value of the Landau distribution is
λmp = −0.225. The full width half maximum of the Landau distribution is 4.02ξ. The Coulomb
part cannot be reasonably approximated due to its long tail towards higher energy deposits.

3.3 Electronic noise

The noise has gaussian distribution, centered around zero, with sigma σe. The probability
density function is

fe(∆e|σe) =
1

σe

√
2π

exp

[

− ∆2
e

2σ2
e

]

(13)

3.4 Average and most probable energy loss

The average restricted energy loss is

∆restr = ξ

[

log
2mec

2β2γ2E0

I2
− E0

2mec2γ2
− β2 − δ

]

(14)

where the energy transfers are restricted to E < E0 ≈ O(500 keV). The most probable energy
loss is

∆mp = ξ

[

log
2mec

2β2γ2ξ

I2
+ 0.198 − β2 − δ

]

(15)
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Figure 1: The average restricted and the most probable energy loss at 300 µm silicon thickness,
for electrons, pions, kaons and protons.

4 Approximate energy loss model

The resulting energy loss distribution is the convolution of the three (resonant, Coulomb and
noise) components

f(x, β) = fr ∗ fC ∗ fe (16)

which in the end is the convolution of the Landau distribution with gaussian. This can be cal-
culated with difficulty and slowly because it needs numerical integration. It seems advantageous
to approximate f by a combination of gaussian, exponential and polynomial functions

f(y) =
N

σ
√

2π
·



















exp
[

− (y−m)2

2σ2

]

if y < t1

exp
[

− (t1−m)(2y−t1−m)
2σ2

]

if t1 < y < t2

exp
[

− (t1−m)(2t2−t1−m)
2σ2

]

· 1
h

1+
(x−t2)(t1−m)

2σ2

i2 if t2 < y

(17)

The primitive functions are

F (y) = N ·



















1
2

[

1 + erf
(

y−m

σ
√

2

)]

if y < t1

− σ

(t1−m)
√

2π
exp

[

− (t1−m)(2y−t1−m)
2σ2

]

if t1 < y < t2

− 2σ

(t1−m)
√

2π
exp

[

− (t1−m)(2t2−t1−m)
2σ2

]

1

1+
(x−t2)(t1−m)

2σ2

if t2 < y

(18)

Note that Fg(−∞) = 0 and Fp(∞) = 0. The N normalization factor is such that

∫

f(y)dy = [Fg(t1) − 0] + [Fe(t2) − Fe(t1)] + [0 − Fp(t2)] = 1 (19)

The f approximating function was constructed such that it is gaussian below the t1 turning
point, exponential between points t1 and t2 and polynomial (1/x2) above t2. Note that the
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asymptotic behavior of the Landau distribution is 1/x2, as well. f and its derivative with
respect to y is continuous at t1 and t2. It can be shown that both the parameters σ, t1 and t2
are closely linear functions of the most probable value m and they do not depend directly on
βγ. m is function of βγ and x which can be approximately factorized.

m(βγ, x) = ε(βγ) · x(1 + ax) (20)

The probability of measuring a given ADC value y is thus

P (y < y′ < y + 1) =

y+1
∫

y

f(y)dy (21)

Similarly, the probability of underflow (below threshold y0) and overflow (above maximum
measurable ADC y1) can be given

P (y′ < y0) =

y0
∫

−∞

f(y)dy P (y1 < y′) =

∞
∫

y1

f(y)dy (22)

4.1 Determination of model parameters

The parameters of the approximate models can be extracted from theory, simulated and real
data. Here only the determination from theory is demonstrated.

For a series of βγ and x values 105 energy deposits have been generated according to the
model described in Section 3. The corresponding values are βγ = 0.4, 0.8, 1.6, 3.2, 6.4 and 12.8;
x = 20, 40, . . . , 500 µm in 20 µm steps. The resulting ADC distributions have been fitted using
the approximate model, giving m, σ, t1 and t2 values. The figures in Fig. 3. show that σ, t1 −m
and t2 −m are closely linear function of the most probable value m. At the same time m(x) can
be well approximated by a second order polynomial with constant coefficients.

The corresponding −2 log P values as function of the most probable deposit m for several
measured ys are shown in Fig. 4. These numbers are tabulated and can be used for minimization
with help of natural cubic spline interpolation.

5 Derivatives

For the calculation of the derivative vector and the approximate Hessian matrix it is enough
to compute the first derivatives of the mean m with respect to the parameters a. It can be
decomposed into two parts:

∂m

∂a
=

∂m

∂l

∂l

∂a
= ε

∂l

∂a
,

∂m

∂ε
= l (23)

Thus the only partial derivative to calculate is the dependence of the path-length inside a
pixel on the parameters a. These parameters are the coordinates of the (center of the) hit H

with the average energy loss ε.
The path-length in a pixel is given by

l2 = (C1 − C2)2 (24)

and the differentials are

lδl = (C1 − C2)(δC′
1
− δC′

2
) (25)
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Figure 2: Energy loss distributions for several βγ and x values. The approximating function is
shown in blue (G+E+P), the gaussian only (G) and gaussian+exponential part (G+E) is also
given.
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Figure 4: Log-likelihood values as function of the most probable deposit m for several measured
ys.

By moving the hit, the endpoints of the segments are moved as well

δCi = δH (26)

The segment endpoints are not always movable in both directions. If the endpoint is a
crossing point of the track and the cell boundary, it is only movable along the boundary. The
segment endpoint is movable in all directions if it is itself a track endpoint. The partial derivative
is

∂l

∂H
=

∑

i

ni

|nie|
(27)

6 Minimization

The Levenberg-Marquardt method was modified in order to meet the needs of the log-likelihood
estimation. The merit function is

”χ2” = −2
∑

i

log f(i;a) (28)

Here a denotes the list of parameters for the cluster (position, length, orientation, average
energy loss). The index i runs for all the channels belonging to the cluster, f is the probability
density function.

βk ≡ −1

2

∂χ2

∂ak

=
∑

i

∂ log f(i;a)

∂ak

(29)

αkl ≡
1

2

∂2χ2

∂ak∂al

=
∑

i

∂2 log f(i;a)

∂ak∂al

(30)
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The R Fisher information matrix is

Rkl = −
∑

i

E

[

∂2 log f(i;a)

∂ak∂al

]

= −
∑

i

∑

yi

f(i;a)
∂2 log f(i;a)

∂ak∂al

(31)

σ2
k = R−1

kk (32)

The maximum likelihood estimator is consistent and asymptotically normally distributed
with covariance matrix R−1. The diagonal elements simply give the corresponding σ2

k values.

7 Extraction of yields

With help of the known distribution functions fl(x) for different particle species, a fitting function
F (xi) with weights al can be constructed. It is simply a linear combination.

F (xi) =
∑

l

alfl(xi) (33)

(34)

The yields al of the particles can be extracted using an analytical solution of the least-squares
method. The χ2 is a sum for all the bins i:

χ2 =
∑

i

[

F (xi) − yi

σi

]2

(35)

For many entries σ2
i ≈ yi. Its minimum can be determined by solving the equations

∑

l

[

∑

i

fk(xi)fl(xi)

yi

]

al = 1 (36)

8 Results

Thousand special events have been generated with flat multiplicity distribution up to 500 par-
ticles. Each event has same number of π+, π−, K+, K+, p and p. This choice enables to see
the kaons and protons without having to generate a lot of minimum bias events where pions
dominate. The particles have flat pseudo-rapidity distribution in the range [−3, 3] and trans-
verse momentum according to the p

T
exp

[

−p2
T
/(2σ)2

]

distribution with σ = 400 MeV/c. The
reconstruction was based on pixel hit triplets. Only those pixel cluster have been used which
do not lie on the boundaries of the silicon and has a clean cluster shape compatible with the
predicted thrust of the track.

The estimated most probable energy loss in 300 µm path and the corresponding truncated
mean energy loss as function of total momentum is given in Figures 5 and 6, both for positive
and negative particles. The energy loss can be histogrammed and plotted in different momentum
slices. Distributions for maximum likelihood and truncated mean methods at p = 0.4, 0.8 and
1.2 GeV/c are shown in Figures 7, 8 and 9, respectively. Separation powers for π-K and p-K are
given which is defined as 2(m2 − m1)/(σ1 + σ2). The resolution of the pion peak is between 9 -
10%, it is narrower than the result of the truncated mean method by 2%.
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Figure 5: Most probable energy loss on 300 µm path in silicon as function of total momentum
p, for positive particles. Results with the maximum likelihood and truncated mean methods are
shown for comparison.
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p, for negative particles. Results with the maximum likelihood and truncated mean methods are
shown for comparison.
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