# Phi meson reconstruction in p + p events using the pixel detector

Gergely Patay

June 22, 2006

## 1 Introduction

Phi mesons are reconstructed from the  $\phi \to K^+K^-$  invariant mass spectrum.

## 2 Reconstruction method

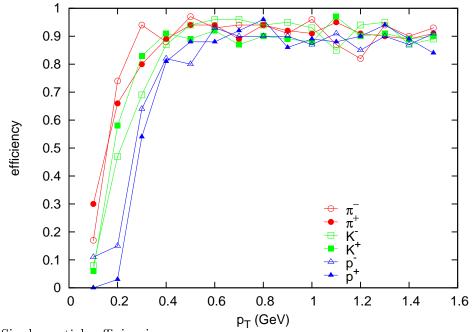
Charged kaons are reconstructed in the pixel detector using the low-pT track finder algorithm. Reconstruction efficiency was investigated for different charged hadrons with single particle events in the 0–1.5 GeV/c<sup>2</sup> pT,  $|\eta| < 1$  range. [fig:singletrack-effic]

Efficiency can be estimated for charged kaons with the following fitted function:

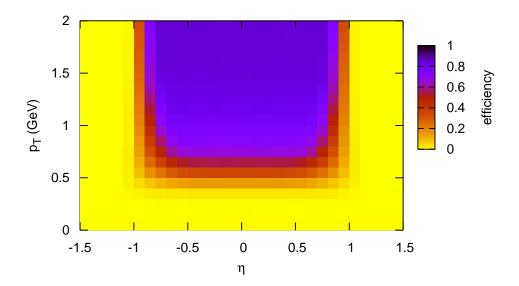
$$\epsilon_K(p_T) \approx 0.92 - 2.02 \exp(-8.55 p_T)$$

Fake rate was investigated with p + p minimum bias events. In the kinematical range  $p_T > 0.2$ ,  $|\eta| < 1$  fake rate is about FIXME.

## 3 Track selection, acceptance


For reliable  $\phi$  reconstruction daughter kaons with  $p_T > 0.2 \text{ GeV/c}^2$ ,  $|\eta| < 1$  were selected. Acceptance was calculated for phi mesons in the  $p_T$ - $\eta$  plane with a toy MC.

For the  $|\eta| < 1$ ,  $p_T = 0..2$  GeV range the averaged acceptance is 51%, for  $p_T > 0.6$  it is cca. 70% (with kaon efficiency).


[fig:acceptance]

A cut on the energy loss of charged particles was imposed: only track candidates with  $dE/dx > 3500*(m_K^2/p^2+1)$  (unit) were selected. This cut lowers drastically the combinatorical background coming from low pT pions while keeping most of the kaons. [see: fig:spectra w|w/o dE/dx]

Estimation of loss due to dE/dx cut...



Single particle efficiencies



Acceptance of  $\phi$  mesons in the  $p_T$ - $\eta$  plane. Kinematical cuts on kaon momentum and reconstruction efficiency were applied.

### 4 Detector resolution

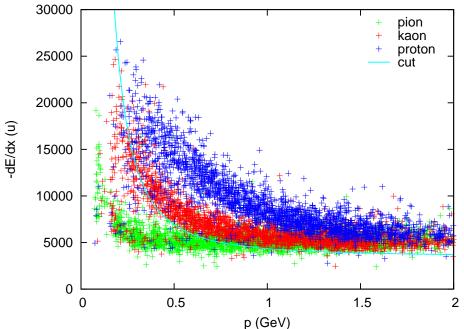
The detector bias of phi mass resolution was determined with special events. 5000 single  $\phi \to K^+K^-$  decays were generated, fully simulated and reconstructed.  $\phi$  mass was fixed at the  $m={\rm PDG}$  value with no linewidth.  $\phi$ 's were generated with flat  $p_T$  and  $\eta$  distribution ( $p_T=0..2~{\rm GeV}, |\eta|<1$ ). These events went through the same analysis as the 'real' events. Mass peak was fitted by both gaussian and BW-type function. The result of the fit is the following:

|                                                    | $m_0 \; ({\rm MeV})$ | FWHM (MeV) | peak area |  |
|----------------------------------------------------|----------------------|------------|-----------|--|
| like sign bg                                       |                      |            |           |  |
| Gaussian                                           | 1017.4               | 12.0       | 2429      |  |
| Lorentz                                            | 1017.5               | 9.2        | 3067      |  |
| mixed event bg                                     |                      |            |           |  |
| Gaussian                                           | 1017.4               | 11.8       | 2372      |  |
| Lorentz                                            | 1017.5               | 8.9        | 2972      |  |
| simple count of the total histogram                |                      |            | 2661      |  |
| total simulated $\phi$ 's in the kinematical range |                      |            | 3756      |  |

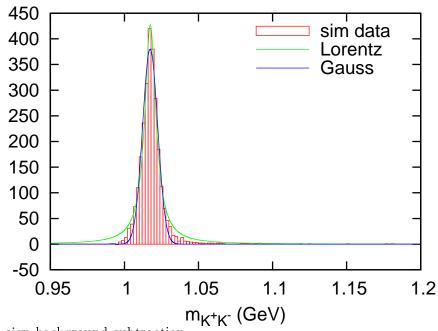
The efficiency of  $\phi$  reconstruction for  $\phi \to K^+K^-$ -only events is cca. 70%. Note the small shift of the reconstructed  $\phi$  mass wrt. the PDG value!

## 5 Background subtraction

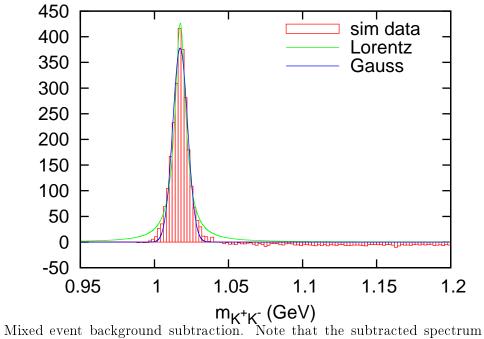
Combinatorical background is subtracted with two different methods.


• Like particle background: invariant mass histograms are calculated for each event using like charged particle pairs.

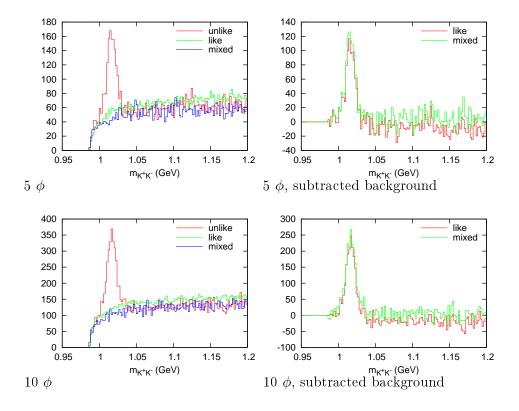
$$N^{ii} = N^{ii}_{+-} - 2\sqrt{N^{ii}_{++} \times N^{ii}_{--}}$$


• Event mixing: every event is mixed with n others; choosing the positive particle from the ith, the negative from the jth event and vice versa (j=i+1...i+n). Background histogram is normalised to have the same area as the original one. (Although this is not the most sophisticated normalisation.)

$$N^{i} = N_{+-}^{ii} - r \times \sum_{j=i+1}^{i+n} (N_{+-}^{ij} + N_{-+}^{ij})$$


On the figures (XY) one can see the effect of different background subtraction.




 $${\sf p}\mbox{ (GeV)}$$  Energy loss of different particles in the pixel detector. Solid curve denotes the applied cut.



Like sign background subtraction



Mixed event background subtraction. Note that the subtracted spectrum goes under 0 because of area normalisation. This is a feature, since this signal-only mixed event histogram can be subtracted from real spectra.

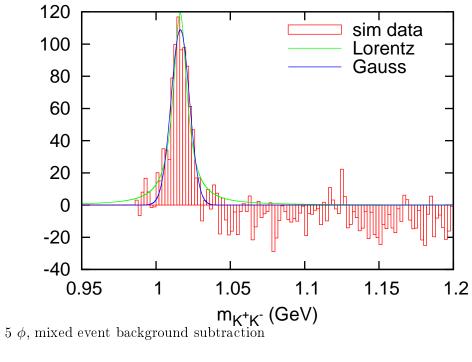


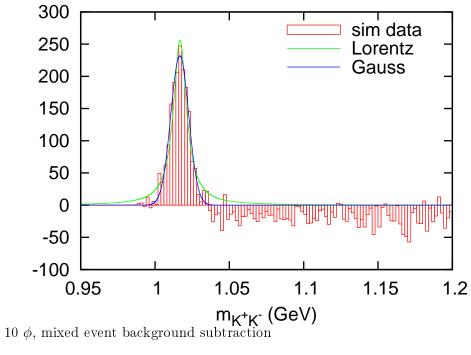
## 6 Events

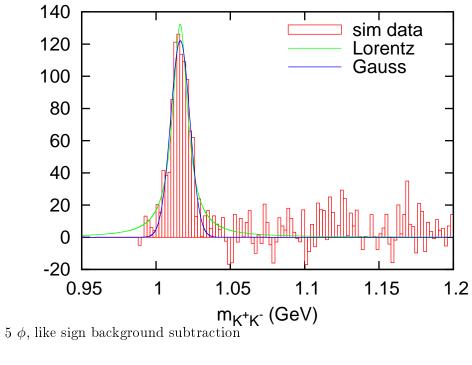
Special event samples were used for the analysis. At CMKIN level for each minbias event 5 (10)  $\phi \to K^+K^-$  decays were added. The 1000+1000 modified events were then fully simulated with OSCAR and digitised/reconstructed with ORCA. Embedded  $\phi$ 's have flat  $|\eta| < 1$ , isotropic azimuthal angle and  $p_T$  drawn from a  $p_T \exp(-p_T/T)$ , T = 300 MeV <sup>1</sup> distribution, daughter kaons are isotropic in the  $\phi$ 's cms.

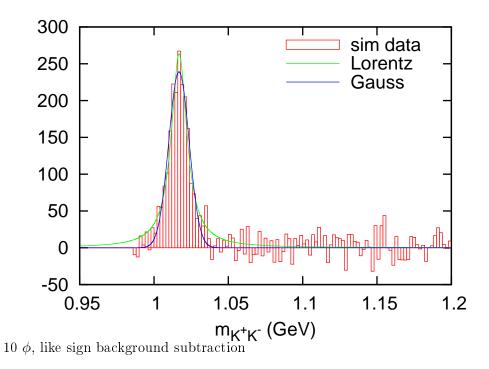
## 7 Results

### 7.1 Total yield


Mass peak was fitted by either a Breit–Wigner or a Gaussian function (the theoretical peak shape should be a Voigt function, ie. BW\*Gauss). Peak area was calculated from the fitted parameters. The difference between the two methods shows a cca. 20% systematic error.


| $5~\phi~/~{ m event}$                                   |                         |             |           |  |
|---------------------------------------------------------|-------------------------|-------------|-----------|--|
|                                                         | $m_0 \text{ (MeV)}$     | FWHM  (MeV) | peak area |  |
|                                                         | ~ \ /                   | ` ′         | peak area |  |
| like sign bg                                            |                         |             |           |  |
| Gaussian                                                | 1016.3                  | 15.2        | 985       |  |
| Lorentz                                                 | 1016.2                  | 12.4        | 1287      |  |
| mixed event bg                                          |                         |             |           |  |
| Gaussian                                                |                         | 14.5        | 842       |  |
| Lorentz                                                 |                         | 11.2        | 1052      |  |
| total simulated $\phi$ 's in the kinematical range      |                         |             | 2278      |  |
| $10~\phi$ / event                                       |                         |             |           |  |
|                                                         | $m_0 \; (\mathrm{MeV})$ | FWHM  (MeV) | peak area |  |
| like sign bg                                            |                         |             |           |  |
| Gaussian                                                | 1016.8                  | 16.1        | 2048      |  |
| Lorentz                                                 | 1016.9                  | 12.7        | 2625      |  |
| mixed event bg                                          |                         |             |           |  |
| Gaussian                                                | 1016.7                  | 14.1        | 1746      |  |
| Lorentz                                                 | 1016.8                  | 10.6        | 2143      |  |
| total simulated $\phi$ 's in the kinematical range 4574 |                         |             |           |  |


In both samples total phi efficiency is cca. 46% in good agreement with the 51% predicted by toy-MC acceptance study.


Fitted peaks are depicted on the figures (XY) for the different background subtraction schemes.

 $<sup>^{1}\</sup>mathrm{SPS}$  and RHIC data suggest  $T\sim400$  MeV, but for the moment T=300 is perfect









# 7.2 $p_T$ spectra

The available statistics is not enough to make clear  $p_T$  spectra. Generating more events to achieve higher statistics is progress.