

FC7 User Manual

 version 0.2 (2015.11.12)

FC7 project homepage: https://espace.cern.ch/project-FC7
Contact: Mark.Pesaresi (at) imperial.ac.uk & Paschalis.Vichoudis (at) cern.ch

2 FC7 User Manual - draft

v0.2

Document History

• V0.2, 2015.11.11: various updates

• V0.1, 2014.02.25: first draft

FC7 User Manual - draft 3

v0.2

Table of Contents

Document History .. 2

Table of Contents ... 3

1. INTRODUCTION .. 4

2. ARCHITECTURE ... 5

3. How to use the FC7 ... 7

3.1 Hardware ... 7

3.1.1. DIP Switches ... 7

3.1.2. Powering .. 9

3.1.3. Configuration ... 9

3.1.4. Jumpers .. 16

3.1.5. Resets ... 16

3.1.6. Status LEDs ... 16

3.2 Firmware ... 17

3.2.1. Requirements ... 17

3.2.2. Installation ... 17

3.3 Software .. 19

3.3.1. Requirements ... 19

3.4 Installation ... 19

3.3.2. Testing access to the FC7 ... 19

4. REFERENCES .. 20

5. APPENDIX A .. 21

6. APPENDIX B ... 23

4 FC7 User Manual - draft

v0.2

1. INTRODUCTION

Building upon the success of two existing hardware developments - the Gigabit Link Interface
Board (GLIB) [1] and the Master Processor, Virtex-7 (MP7) [2] - the FC7 is primarily designed
around the Xilinx Kintex-7 FPGA and the FPGA Mezzanine Card (FMC) Standard [3] to provide
users with a platform that supports Multi-Gigabit Transceivers (MGT) operating up to 10 Gb/s,
and plenty of configurable I/O in a flexible and re-usable package. By basing the FC7 on
existing hardware, reusing design components and increasing commonality between projects
wherever possible, the development time to maturity has been short with production series
boards, including firmware, ready for distribution less than a year and a half after starting the
design effort. Like the GLIB and MP7, the FC7 is an Advanced Mezzanine Card [4] (AMC) fully
compatible with µTCA [5] crate based applications. A series of upgrades for the Compact
Muon Solenoid (CMS) experiment [6] at CERN will start to see µTCA systems introduced as
part of the off-detector electronics architecture. Primarily developed with two CMS users in
mind, the FC7 is fully compatible with µTCA for CMS where, in addition, communication with
a central clock, timing and DAQ services module (AMC13) [7] within the crate environment is
required.

Figure 1-1: FC7-R0b top and bottom view

FC7 User Manual - draft 5

v0.2

2. ARCHITECTURE

Designed as a full size, double width AMC, the FC7 is suitable for µTCA-based scalable
production or test systems, as well as for bench-top prototyping. Figure 1-1 shows the main
features of the FC7 which include,

• Xilinx Kintex-7 KC7K420T-2 FPGA - capable of supporting line rates of up to 10 Gb/s

• card edge AMC [4] connector - provides high-speed connectivity on up to 12 ports (see
Figure 1-2) and is fully compatible with the AMC13, µTCA for CMS applications, and supports
a range of MGT protocols to the backplane

• two 400-pin Samtec SEARAY sockets - chosen to be fully compatible with Low Pin Count [3]
(LPC) FMCs but to additionally provide access to high-speed serial lines as defined by the High
Pin Count [3] FMC pinout, so that a maximum of 20 lines are available on the front panel.
Accommodate dual width, legacy and non-standard FMCs

• 4 Gb DDR3 RAM - capable of memory transfer rates of up to 30 Gb/s

• microSD slot - provides storage for a firmware image repository including an inviolate
fallback ‘golden’ image, and reduces firmware write times down from 5 minutes to 10 seconds

• ATMEL microcontroller - implements Module Management Controller (MMC) functionality,
as defined by the AMC specification. Runs common software developed with the MP7.

Figure 2-1: FC7 main features

6 FC7 User Manual - draft

v0.2

Figure 2-2: AMC connectivity

In order to simplify the application-specific development process for users, the FC7 follows a
firmware architecture (inherited from the GLIB) whereby the FPGA design is divided into two
blocks; the system core and the user logic (Figure 3-1). The system core, delivered by the FC7
team, implements all basic infrastructure such as the Gigabit UDP Ethernet link based on
IPBus (a simple IP-based control protocol designed for controlling xTCA-based hardware) [8],
the configuration of the clocking circuitry, the control of the powering circuitry, the MMC
communication, the SD card programming, board identification and various monitoring tasks.
Additionally, the FC7 firmware provides modules that can be implemented in the user logic if
needed, including the interface with the DDR3 memory and generic I2C and SPI controllers.

FC7 User Manual - draft 7

v0.2

Figure 2-3: firmware architecture

3. How to use the FC7

3.1 Hardware

3.1.1. DIP Switches

The FC7 features two 8-position piano-type1 DIP switches (J1 and J7) for configuration
purposes both located in the top left corner of the board. In the numbering convention
scheme adopted, the orientation (switches facing left or right) of the switch becomes
inconsequential. Switch position A is the switch closest to the BOTTOM of the board. Switches
follow alphabetical order towards the TOP of the board with position H being the switch
closest to the TOP of the board. The figure below illustrates the convention.

CPLD CONFIG (J1)

The CPLD CONFIG (J1) DIP switch provides the CPLD with the JTAG and FPGA boot options
used for configuration of the board. The table below describes the switch options.

1 Please note that the piano-type switches are fragile so operate them carefully

8 FC7 User Manual - draft

v0.2

Figure 3-1: DIP switch numbering convention

Table 3-1: CPLD CONFIG switch settings

Switch Description Default

A
Selects whether the FPGA is included in the JTAG chain or not.

• UP: not included
• DOWN: included

DOWN

B

Allows configuration of the microcontroller using the JTAG chain.
• UP: not included
• DOWN: included
NOTE: programming the microcontroller using the JTAG chain precludes
any other device from joining the chain. Consequently, switches A, C &
D should be UP when attempting to configure the microcontroller.

UP

C

Selects whether an FMC occupying the L8 slot is included in the JTAG chain
or not.

• UP: not included
• DOWN: automatically included when an FMC is inserted into the L8

slot

UP

D

Selects whether an FMC occupying the L12 slot is included in the JTAG chain
or not.

• UP: not included
• DOWN: automatically included when an FMC is inserted into the

L12 slot

UP

E

Selects whether the FPGA should be configured off the SPI Flash PROM or
the microSD card on power on.

• UP: FPGA is configured via SPI Flash PROM
• DOWN: FPGA is configured via microSD card
NOTE: switch should be set to DOWN if communication with the micro-
SD card is required (e.g. for remote data uploading).

DOWN

F Reserved. UP

G
Allows direct SPI programming.

• UP: SPI Flash programmed via FPGA (JTAG)
• DOWN: direct access to SPI Flash via SWITCHED JTAG header (J4)

UP

H
Selects JTAG source.

• UP: ‘local’ SWITCHED JTAG header (J4) is selected
• DOWN: ‘crate’ AMC connector JTAG is selected

UP

FC7 User Manual - draft 9

v0.2

GEN CONFIG (J7)

The GEN CONFIG (J7) DIP switch is connected to the FPGA only for user purposes. Therefore,
it has no dedicated function.

3.1.2. Powering

The FC7 features a switch (S2) that selects desktop or crate operation mode and a screw
terminal block header (J8) where 12V can be supplied (when in stand-alone desktop mode),
both located next to the edge connector.

Figure 3-2: DIP switch numbering convention

3.1.3. Configuration

JTAG connectors

The FC7 features two onboard JTAG headers.

• The CPLD JTAG (J3) header is for configuring the CPLD only.
• The SWITCHED JTAG (J4) connector is a JTAG header which allows for configuration of

the FPGA or other onboard devices by use of the CPLD CONFIG dip switch (J1) as
described in Table 3-1. Configuration options for the FPGA are described below. An
alternative option for accessing the on board JTAG chain (excluding CPLD) exists. By
use of the appropriate switch setting (Table 3-1), one can select between using the
local JTAG header (J4) and the AMC connector JTAG interface. Use of the AMC JTAG
interface either requires a uTCA crate and an AMC card that support JTAG
configuration over the backplane or a supported AMC extender card.

10 FC7 User Manual - draft

v0.2

Figure 3-3: JTAG connectors

Direct programming of CPLD via JTAG

To update2 the CPLD with the latest binary:

1. Connect the JTAG programmer to the CPLD JTAG (J3) header.
2. Power the board on.
3. Using IMPACT, commence a Boundary Scan. Right click after completion and “Initialize

Chain”.
4. When prompted to assign a new configuration file, navigate to the top.jed binary.

Right click on the XC2C256 device, selecting “Program”.

Direct programming of Atmel microcontroller via JTAG

The Atmel microcontroller must be programmed if the user wants to take advantage of the
advanced functionality available to the FC7 such as crate operation, remote power and
network management, FPGA configuration off the SD card, and remote firmware loading.

NOTE: The programming procedure has been tested & validated on native (32/64bit) Linux
and (32/64bit) Windows 7, using the JTAGICEII programmer tool under AVR32 Studio 4, and
the JTAGICEII/III programmer tool under Atmel Studio 6.1 respectively.

To update3 the microcontroller with the latest MMC binary:

1. Connect the JTAGICEII or JTAGICEIII programmer tool to the SWITCHED JTAG (J4)
header.

2. Set the CPLD CONFIG (J1) dip switch B to DOWN. Switches A, C and D must be UP (see
Table 3-1).

2 Please note that the FC7 board comes with the CPLD already pre-programmed so there is no need to take any
action.
3 Please note that the FC7 board comes with the microcontroller already pre-programmed so there is no need
to take any action.

FC7 User Manual - draft 11

v0.2

3. Power the board on.
4. Under AVR32 Studio 4 or Atmel Studio 6, connect to the tool. Exact instructions will

depend on the version of software you are using.
• In Studio 6, right click on the JTAGICE tool under “Available Tools” and select

“Device Programming”. Make sure the correct tool (JTAGICEII or JTAGICEIII),
device (AT32UC3A3256) and interface (JTAG) are being used before clicking
“Apply”. Select the “Memories” tab and follow the instructions below.

• In AVR32 Studio 4, find the JTAGICEII tool under “AVR Targets”. Right click and
follow the instructions below.

5. Erase the chip. This will prevent any old User Page configuration data from being
uploaded after the next step is run.

• In Studio 6, under “Device”, select “Erase Chip” and run “Erase Now”.
• In AVR32 Studio 4, select “Chip Erase”.

6. Follow this up by erasing the User Page. This will make sure that new User Page
configuration data is updated once the new program code is uploaded and executed
in the next step.

• In Studio 6, under “Device”, select “Erase User Page” and run “Erase Now”.
• In AVR32 Studio 4, select “Erase”. Select “Also erase the User Page” and click

OK.
7. Finally program the microcontroller with the latest fc7_mmc.hex or fc7_mmc.elf file.

• In Studio 6, under “Flash”, navigate to the desired hex file and click “Program”.
• In AVR32 Studio 4, select “Program”, navigate to the desired elf file, check all

the program options and click OK.

The FPGA can be both programmed4 directly via JTAG, or indirectly via non-volatile images
stored either on an SPI Flash PROM or an optional SD card. Firmware images can either be
stored directly to the SD card from a PC, or can be uploaded remotely via the FPGA using
IPBus, providing the FPGA is already programmed with appropriate firmware.

Direct programming of FPGA via JTAG

To program the FPGA directly:

1. Generate the firmware bit file. The bitgen option “–g Compress” can be set to TRUE
to speed up the process.

2. Connect the JTAG programmer to the SWITCHED JTAG (J4) header.
3. Set the CPLD CONFIG (J1) dip switch A to DOWN. Switch B must be UP (see Table 3-1).
4. Power the board on.

4 Please note that neither the SPI Flash PROM nor the SD card (when supplied) are programmed. Therefore, it
please make sure you configure the FPGA.

12 FC7 User Manual - draft

v0.2

5. Using IMPACT, commence a Boundary Scan. Right click after completion and “Initialize
Chain”.

6. When prompted to assign new configuration file, navigate to the generated FPGA .bit
file. Right click on the XC7K420 device, selecting “Program”.

Indirect programming of FPGA via SPI Flash PROM

1. Generate the firmware bit file. The bitgen option “–g Compress” should be set to
TRUE as this vastly speeds up the programming process.

2. Connect the JTAG programmer to the SWITCHED JTAG (J4) header.
3. Set the CPLD CONFIG (J1) dip switch A to DOWN. Switches B and E must be UP (see

Table 3-1).
4. Power the board on.
5. Using IMPACT (see Figure 3-4), create a PROM file, using the parameters:

• SPI Flash -> Configure Single FPGA
• Auto Select PROM
• File Format: MCS

6. Add the firmware bit file. Once complete, “Generate File”.
7. Commence a Boundary Scan. Right click after completion and “Initialize Chain”.
8. When prompted to assign new configuration file, cancel, but when prompted to add

SPI/BPI Flash, accept and navigate to the generated MCS file.
9. Select SPI PROM N25Q256, Data Width 1.
10. Right click on the SPI/BPI Flash device, selecting “Program”.

Figure 3-4: Binary file generation for indirect programming of FPGA via SPI Flash PROM

FC7 User Manual - draft 13

v0.2

Indirect programming of FPGA via microSD card

The MMC is able to configure the FPGA on power up if a valid programming file is available
on a microSD card inserted into the FC7. Firmware images can be stored directly to the
microSD card using a SD card writer and a SD file management utility called imgtool. The
imgtool utility is currently supported as part of the CACTUS project. Any issues or bug reports
related to the use of the imgtool utility to should be directed to the CACTUS TRAC ticket
system, https://svnweb.cern.ch/trac/cactus/report/1. Please check to see if your question
has already been asked before submitting a new ticket.

NOTE: The imgtool procedure has been tested & validated on native (32/64bit) Linux SLC5
& SLC6 only

WARNING: Remote programming of the FPGA (see below) can only be guaranteed if the FC7 Golden
Firmware Image “GoldenImage.bin” from the FC7 SVN repository is correctly stored on the microSD
card.

To store firmware images to the microSD card directly:

1. Generate the firmware bit file making sure that the bitgen option “–g Compress” is set
to FALSE

2. Using IMPACT (see Figure 3-5), create a PROM file, using the parameters:
• Generic Parallel PROM
• Auto Select PROM
• File Format: BIN (Swap Bits ON)

3. Add the firmware bit file. Once complete, “Generate File”.
4. From SVN, check out:

svn co https://svn.cern.ch/reps/cactus/tags/ic_mmc/ic_mmc_v1_6_1

5. Change into the “imperial_mmc/tools/imgtool” directory and run “make
Board=FC7_0” to create the “imgtool” executable

6. If using an external card-reader, plug it into your linux PC WITHOUT THE microSD
CARD INSERTED.

7. Insert the microSD card.
8. Run “sudo /sbin/fdisk -l”. There should be an entry that says “Disk XXX doesn't contain

a valid partition table”. Note the name of this disk.
9. Run “sudo chmod 777 XXX”
10. The “imgtool” executable has several options (see Table 3-2). The usage options can

be seen by running “./imgtool ?”:
11. Usage of “imgtool” is, then,

./imgtool XXX Command [parameters]

https://svnweb.cern.ch/trac/cactus/report/1

14 FC7 User Manual - draft

v0.2

12. To prepare a microSD card do:

./imgtool XXX format Firmware

./imgtool XXX add YYY.bin ZZZ.bin

Where XXX is the name of the microSD card as reported by “fdisk” in step 8, YYY.bin is
the name you wish the firmware to have on the microSD card and ZZZ.bin is the name
of the PROM file created in step 2. This formats also the microSD card and gives it the
volume name “Firmware”.The name of the firmware image (YYY) from which the card
is booted at power-up must always be “GoldenImage.bin”; if this file does not exist on
the microSD card, the FPGA will not be programmed at power-up and so Ethernet
access will not be available. Any number of additional firmware images can be stored
to the microSD card using this method, provided there is enough space left on the
volume (min 20MB). The FPGA can be re-configured with the desired firmware image
via IPbus after power-up.

13. To list the contents of an existing SD card:

./imgtool XXX list

The conversion between the native endianness of the host system to big-endian,
required for the Atmel UC3A3256, is handled automatically by the imgtool utility.

14. Insert the microSD card into the FC7 and power on, making sure that switch E on the
CPLD CONFIG (J1) is set to the DOWN position beforehand (see Table 3-1). After a
couple of seconds, the board should load the “GoldenImage.bin” file stored on the
microSD card.

Figure 3-5: Binary file generation for indirect programming of FPGA via microSD card

FC7 User Manual - draft 15

v0.2

Table 3-2: imgtool command options

Command Description
format <label> Formats an image
list List files in an image
add <name> <file> Adds a file to an image
get <name> <file> Gets a file from an image
del <name> Deletes a file from an image
check <name> Verifies the checksum of a file

Remote programming of FPGA via microSD card and IPbus

The FC7 also allows for remote programming of the FPGA over IPbus, again by use of
persistent storage of firmware images on the microSD card. The mechanism for remote
programming is described in Appendix ?. Any number of firmware images can be stored on
the microSD card, provided there is sufficient space on the volume, and the desired image to
configure the FPGA can be selected via an IPBus command.

NOTE: New or non-SFWFS formatted microSD cards must be formatted using the imgtool
utility beforehand. It is highly recommended to follow the steps described in the section
“Indirect programming of FPGA via microSD card” and add the SVN “GoldenImage.bin” to
the microSD card first.

NOTE: The following procedure has only been tested & validated on native and virtual
(32/64bit) Linux SLC5 & SLC6 so far.

WARNING: Remote programming of the FPGA can only be guaranteed if the FC7 Golden Firmware
Image “GoldenImage.bin” from the FC7 SVN repository is already correctly stored on the microSD
card. At present, the MMC will allow the user to overwrite the Golden Firmware Image remotely for
ease of debugging. The Golden Image should be inviolate to ensure IPBus access is always
guaranteed so this feature will be removed in future.

To remotely program the FPGA over IPBus:

1. Generate the firmware bit file, making sure that the bitgen option “–g Compress” is
set to FALSE

2. Set up the software environment according to Section 3.3
3. Insert the microSD card with a valid “GoldenImage.bin” file into the FC7 and power

on, making sure that switch E on the CPLD CONFIG (J1) is set to the DOWN position
beforehand (see Table 3-1). After a couple of seconds, the board should load the
“GoldenImage.bin” file stored on the microSD card.

4. Run the following executable to reprogram the FPGA with the generated bitfile.

cd sw/fc7

source setup.sh

cd tests

16 FC7 User Manual - draft

v0.2

./bin/fc7-userimage-reprogram.exe –i ip_address –f xilinx_bit_file

The executable will convert the provided bit file, generating a bin file which is both byte-
swapped to handle the endianness of the host system, and bit-swapped for compatibility with
selectMAP configuration of the FPGA. The generated file “UserImage.bin” is (over)written to
the microSD card, before the instruction to reset the FPGA is transmitted.

5. Contained within the instruction to reset the FPGA is also the name of the firmware
image to load, once the FPGA is ready to be configured. Two auxiliary executables are
provided to reboot and reconfigure the FPGA; either with the “GoldenImage.bin” or
the “UserImage.bin”.

./bin/fc7-boot-goldenimage.exe –i ip_address

./bin/fc7-boot-userimage.exe –i ip_address

If the executable fails to write a valid “UserImage.bin” file to the microSD card, or some other
error occurs, the “GoldenImage.bin” is loaded automatically so that IPBus communication and
remote access is always available. More details can be found in Appendix A.

3.1.4. Jumpers

TO DO: Port3, CLK in/out

3.1.5. Resets

TO DO: Reset switches

3.1.6. Status LEDs

The FC7 apart from the LEDs defined in the AMC specification, it provides 6 additional status
LEDs in its front panel (Figure 3-6). Four of them (MMC, SYS top/bot and CPLD LED) have a
defined behavior (brief description in Table 3-3) while the remaining two (USR top/bot LED)
are user-defined.

Figure 3-6: FC7 custom LEDs

FC7 User Manual - draft 17

v0.2

Table 3-3: LED status codes (not all combinations included)

LED COLOUR STATUS

CPLD LED

RED FPGA in reset
GREEN (blink) CPLD clock
GREEN FPGA configured
BLUE SPI PROM configuration mode

SYS LED TOP
RED Golden Image Firmware loaded
BLUE (blink) IPBus 1Hz clock

SYS LED BOTTOM
RED CDCE PLL not locked
ORANGE CDCE TTC clock out of phase
GREEN CDCE ok

MMC LED GREEN Loading firmware from SD

3.2 Firmware

3.2.1. Requirements

To build custom firmware for the FC7, the following packages are required:

IPBus 2.0v1 into [project_root]/cactus/tags/ipbus_fw/ipbus_2_0_v1

svn co https://svn.cern.ch/reps/cactus/tags/ipbus_fw/ipbus_2_0_v1

FC7 5.0.1 into [project_root]/fc7/tags/fc7_5.0.1

svn co https://svn.cern.ch/reps/ph-ese/be/fc7/tags/fc7_5.0.1

To build custom MMC software, the following package is required in addition:

IC_MMC v1.61 into [project_root]/cactus/tags/ic_mmc/ic_mmc_v1_6_1

svn co https://svn.cern.ch/reps/cactus/tags/ic_mmc/ic_mmc_v1_6_1

Xilinx ISE v14.7 is recommended for firmware development and implementation.

3.2.2. Installation

The folder tree should be as described in Figure 3-1.

To use the existing example code as is, compile the “fpga_fc7_golden.xise” project file under
fc7/tags/[tag]/fw/prj/fpga_fc7_golden using Xilinx ISE.

When developing your own code, please keep in mind that in order to receive support, the
files under fc7/tags/[tag]/fw/src/sys MUST remain unchanged. The files under

18 FC7 User Manual - draft

v0.2

fc7/tags/[tag]/fw/src/usr can be freely modified according to the user needs. The CPLD
firmware & MMC software source is provided for your reference only and we strongly suggest
not modifying it.

Figure 3-7: Folder Tree

Tagged binaries are provided that are guaranteed for cross-compatibility. These can be found
in the following locations:

• CPLD “top.jed” in fc7/tags/[tag]/fw/prj/cpld_fc7
- for installation, follow the guide “Direct programming of CPLD via JTAG”

in Section 3.2.3 above.

• MMC “fc7_mmc.hex” or “fc7_mmc.elf” in fc7/tags/[tag]/fw/prj/mmc_fc7/RunFC7
- for installation, follow the guide “Direct programming of Atmel

microcontroller via JTAG” in Section 3.2.3 above.

• FPGA “GoldenImage.bin” in fc7/tags/[tag]/fw/prj/fpga_fc7_golden
- for installation, follow the guide “Indirect programming of FPGA via

microSD card” in Section 3.2.3 above.

FC7 User Manual - draft 19

v0.2

3.3 Software

3.3.1. Requirements

• Linux SL6-64 bit (recommended) or Linux SL5-32/64 bit (deprecated), native or virtual.
• Gigabit Ethernet drivers.
• IPBus suite version 2.2 (installation instructions available at https://svnweb.cern.ch/

trac/cactus/wiki/uhalQuickTutorial#HowtoInstalltheIPbusSuite)

3.4 Installation

Currently the FC7 software package is available via SVN only and needs to be compiled to be
used.

The FC7 software package is organized into 2 sub-packages:

• fc7/fc7: C++ driver library
• fc7/tests: test programs and scripts

The driver library contains the high level functions. The tests folder contains collected
binaries and scripts for testing FC7s. For running python scripts based on the PyChips library,
the library source is provided alongside the top level fc7 folder as pychips/.

To install the software:

1. Check out from SVN

svn co https://svn.cern.ch/reps/ph-ese/be/fc7/tags/fc7_5.0.1/sw

2. Set up the environment using the setup script, editing as appropriate

cd sw/fc7

source setup.sh

3. Compile

make

3.3.2. Testing access to the FC7

Before starting, make sure the setup.sh script has been sourced.

cd sw/fc7

https://svnweb.cern.ch/%20trac/cactus/wiki/uhalQuickTutorial%23HowtoInstalltheIPbusSuite
https://svnweb.cern.ch/%20trac/cactus/wiki/uhalQuickTutorial%23HowtoInstalltheIPbusSuite

20 FC7 User Manual - draft

v0.2

source setup.sh

In the fc7/tests folder, the following are available:

• bin: test executables
• scripts: test python scripts – tested with Python 2.7.x

WARNING: Currently the test python scripts under fc7/tests/scripts use PyChips, which is now
deprecated. These will eventually be replaced with scripts that use the supported uHAL/python
bound uHAL. PyChips is NOT compatible with Python 3.x

4. REFERENCES

[1] P. Vichoudis et al., First results with the Gigabit Link Interface Board (GLIB), 2012 JINST 6
C12060 [INSPIRE].

[2] A. Rose et al., Development and testing of an upgrade to the CMS level-1 calorimeter
trigger, 2014 JINST 9 C01006 [INSPIRE].

[3] ANSI/VITA, 57.1-2008, http://www.vita.com/, (2010).

[4] PICMG, AMC.0 R2.0 specifications, http://www.picmg.org/openstandards/advanced-
mezzanine-card/, (2006).

[5] PICMG, MTCA.0 R1.0 specifications, http://www.picmg.org/openstandards/microtca/,
(2006).

[6] CMS collaboration, CMS technical design report for the level-1 trigger upgrade, CERN-
LHCC-2013-011, CERN, Geneva Switzerland (2013).

[7] E. Hazen et al., The AMC13XG: a new generation clock/timing/DAQ module for CMS
MicroTCA, 2013 JINST 8 C12036 [INSPIRE].

[8] R. Frazier et al., Software and firmware for controlling CMS trigger and readout hardware
via gigabit ethernet, in proceedings of the 2nd International Conference on Technology and
Instrumentation in Particle Physics, Phys. Procedia 37 (2012) 1892.

FC7 User Manual - draft 21

v0.2

5. APPENDIX A

TO DO: clean this up with diagrams etc.

MMC & Transactor are IPBus masters, FPGA is IPBus slave.

IPBus transport layer between MMC master and FPGA slave is an SPI x1 interface (MMC is SPI
master). Four communication lines; MOSI (data to FPGA), MISO (data from FPGA), Master
CLK, CS.

Additional 16bit DMA bus for data transfers between MMC and FPGA, controlled by MMC.
Two communication lines; NRD (read data bus on falling edge, increment memory address),
NWE (write to data bus on falling edge, increment memory address).

FPGA IPBus slave:

Data/commands to be interpreted by the MMC (e.g. load firmware to sd, delete firmware
from sd, reboot fpga) are received from the standard IPBus Transactor and transparently
packed into a 32bit load FIFO on the FPGA (FPGAtoMMC). A separate return FIFO
(MMCtoFPGA) is also available to read from, containing data from the MMC. The FIFOs have
the IPBus register address 0x0402, each individually accessed by means of the IPBus R/W flag.

Pointer records for the two FIFOs are kept in the slave, accessible in the IPBus register space.
The FPGAtoMMC FIFO record is on 0x0400, and the MMCtoFPGA FIFO record is on 0x0401.

The MMC regularly reads the FPGAtoMMC pointer record on the FPGA via the SPI IPBus. If
data are detected in the FIFO (write pointer>=read pointer+2), the MMC initiates a Direct
Memory Access on the FIFO in the FPGA, reading two 16bit words. The first word is an
instruction command, the second indicates the length of the payload to be read. The FIFO is
continually read via DMA until the payload is fully received and the appropriate instructions
are executed (e.g. write payload to SD card, set boot image filename to be loaded).

Following this, the MMC also loads a reply into the MMCtoFPGA FIFO provided there is
adequate space available. This is checked by querying the MMCtoFPGA FIFO record via IPBus.

22 FC7 User Manual - draft

v0.2

Firmware upload to FPGA from microSD card

The SD-card is formatted with a file-system known as simple firmware file-system (SFWFS).
The storage medium is divided into “slots” around the size of a firmware image, guaranteeing
an image can be stored without fragmentation. An index table at the front of the disk stores
whether a slot is in use, a file name, file size and checksum, which allows access by name. A
full library of SFWFS operations is included. The image files are stored in the blocks after the
header. They do not require their own header and just start at the appropriate block (slot)
and end before the next image. Any unused space in the slot should be padded with
0xFFFFFFFF if the images are being used to configure the FPGA.

FC7 User Manual - draft 23

v0.2

6. APPENDIX B

TO DO: Clean this up with diagrams etc.

IPMI management using ipmitool

This guide assumes that the crate MCH is on the network at address 192.168.0.41 and has a
blank username/password. To address a specific card, its slot number must be converted to
an IPMB-L address, as indicated in the lookup table below.

Table 6-1: Lookup Table (uTCA.0 SPEC R1.0 Page 3-12)

Slot Number IPMB-L Address
1 0x72
2 0x74
3 0x76
4 0x78
5 0x7A
6 0x7C
7 0x7E
8 0x80
9 0x82
10 0x84
11 0x86
12 0x88

Network configuration via the MMC

The IP and MAC address of the board can be optionally configured using IPMI commands to
the MMC. However, in order for IPBus to pick up changes to the network configuration, the
IPBus module ipbus_ctrl should be configured to use the ‘internally’ provided mac and ip
addresses beforehand. To do this, the project needs to be regenerated with the following
modification to “system_core.vhd” under fc7/tags/[tag]/fw/src/sys/sys:

--===================================--

ipb: entity work.ipbus_ctrl

--===================================--

generic map

(

 mac_cfg => internal,

24 FC7 User Manual - draft

v0.2

 ip_cfg => internal,

 n_oob => 1

)

...

TO DO: make this default configuration in golden?

With this firmware, the network configuration can be set as follows:

To set the MAC address,

ipmitool -H 192.168.0.41 -P "" -B 0 -T 0x82 -b 7 -t ipmb_address raw 0x30 0x02 0x00 0x11 0x22 0x33 0x44

0x55

will configure the board with the MAC address 00 : 11 : 22 : 33 : 44 : 55

To set the IP address,

ipmitool -H 192.168.0.41 -P "" -B 0 -T 0x82 -b 7 -t ipmb_address raw 0x30 0x03 0xC0 0xA8 0x00 0x7B

will configure the board with the IP address 192.168.0.123

To save the new configuration to the EEPROM,

ipmitool -H 192.168.0.41 -P "" -B 0 -T 0x82 -b 7 -t ipmb_address raw 0x30 0x01 0xFE 0xEF

otherwise any configuration applied will only be valid until the MMC is power cycled.

To read back the current network settings,

ipmitool -H 192.168.0.41 -P "" -B 0 -T 0x82 -b 7 -t ipmb_address raw 0x30 0x05

will return the MAC and IP addresses in the form,

IP[0] IP[1] IP[2] IP[3] MAC[0] MAC[1] MAC[2] MAC [3] MAC[4] MAC[5] FLAGS

FC7 User Manual - draft 25

v0.2

e.g. “192 168 0 123 00 11 22 33 44 55 00” for the above example configuration. The flags
(returned as 0x00 in the example), is a bitmask. The only bit that is currently used is 0x80 and
if this is set then it means the network parameters have been changed but have not been
copied to EEPROM.

TO DO: Will change when CMS wide definition of this procedure using new NetFns is implemented. Eventually

best to describe this section using the helper script below.

Power cycling the board

The FC7 can be remotely reset using an IPMI command that only applies to the board itself
(i.e. a local reset) without changing the module power state in the crate. All power rails except
the external 12V payload power and 3.3V management power is reset in this process.

To reset the board,

ipmitool -H 192.168.0.41 -P "" -B 0 -T 0x82 -b 7 -t ipmb_address raw 0x30 0xFF 0xDE 0xAD

Sending raw user defined OEM commands

User defined IPMI commands can be implemented in the MMC code for extended purposes
(see ??). The OEM group extension 0x2E is used as the NetFunction (NetFN) code to begin
the transaction.

For example,

ipmitool -H 192.168.0.41 -P "" -B 0 -T 0x82 -b 7 -t ipmb_address raw 0x2E raw_commands

IPMI python script

A helper script exists that can be used to send the commands described above, and more, to
the board. The script “ipmi_helper.py” is found under fc7/tags/[tag]/sw/fc7/test/scripts and
is invoked under python. Slot number conversion is performed automatically.

For more information try,

python ipmi_helper.py help

For example, to retrieve the current network configuration and sensor data from the SDR, try,

python ipmi_helper.py –i –m 192.168.0.41 –s 11

26 FC7 User Manual - draft

v0.2

assuming an MCH with IP 192.168.0.41 with null username and password, and a board in slot
11.

WARNING: A bug exists in ipmitool that reports some sensor values in the SDR as “Disabled” even
though they are not. Using ipmiutil always reports the correct sensor values.

	Document History
	Table of Contents
	1. INTRODUCTION
	2. ARCHITECTURE
	1.
	2.

	3. How to use the FC7
	3.1 Hardware
	3.1.1. DIP Switches
	CPLD CONFIG (J1)
	GEN CONFIG (J7)

	3.1.2. Powering
	3.1.3. Configuration
	JTAG connectors
	Direct programming of CPLD via JTAG
	Direct programming of Atmel microcontroller via JTAG
	Direct programming of FPGA via JTAG
	Indirect programming of FPGA via SPI Flash PROM
	Indirect programming of FPGA via microSD card
	Remote programming of FPGA via microSD card and IPbus

	3.1.4. Jumpers
	3.1.5. Resets
	3.1.6. Status LEDs

	3.2 Firmware
	3.2.1. Requirements
	3.2.2. Installation

	3.3 Software
	3.3.1. Requirements

	3.4 Installation
	3.3.2. Testing access to the FC7

	4. REFERENCES
	5. APPENDIX A
	Firmware upload to FPGA from microSD card

	6. APPENDIX B
	IPMI management using ipmitool
	Network configuration via the MMC
	Power cycling the board
	Sending raw user defined OEM commands
	IPMI python script

