







#### **CMS CREATE**

A TWO-DAY EVENT TO CHALLENGE YOUR CREATIVITY



19th - 20th November 2015

IdeaSquare, CERN

Design and develop an interactive exhibit to enhance the visitor experience at CMS Point 5, Cessy





## Goal:

Produce a piece of hardware that will illustrate, for the general public, and kids in particular, what CMS does and how it does it.

## Participants:

4 teams of CMS members + IPAC students

#### Jury

Corinne Chaumontet
Head of **OTPG** 

Patrick Parquet
Head of IPAC Design

Anne Dabrowski
CMS

#### **Evaluation Criteria**

30%: Suitability for visits

30%: Educational content

30%: Product design

10%: Reproducibility



#### **Team 3 = Team Greane**

An interactive projection of CMS shows how particles interact with the detector



#### **Team 1 = Bosonisaurus**

Visitors are guided through the discovery of the Higgs using an interactive board game



LED strips used to represent the function of a Muon chamber



#### Team 2 = Jump for a Pic

Visitors become 2 colliding particles to discover what happens immediately after collisions.



#### **Diversity**

25 participants

15 nationalities

36% of women

4 teams = 4 totally original Exhibits

2 IPAC students per team

# A 33hour team project supported by advisors CMS scientists (and guides) Senior product designers Tourism professionals



Conceptual design











## The Winners!! Team 1: Bosonisaurus

#### The Higgs Playground

(Getting the Eureka effect)

#### The Playground

The centerpiece of the exhibit Stylized CMS, gentile and engaging

#### The Animation

Kind professor needs help finding the Higgs Designed to attract kids and to show how blocks go together

#### The Blocks

Energy deposits in subdetectors, color-coded, V-shape

Interlocking with magnets (currently just LEGO)
The main idea: Build particles in the right form
starting from deposits ► shape sorter to check
whether the resulting particle is a Higgs

The prototype is being turned into a full exhibit and will be installed at Point 5 by April









### **Building the Exhibits**

#### The Higgs Playground

Currently two prototypes have become reality

- Board Game Professionally printed onto a rigid durable plastic
- Building blocks tested and 3D printed
- Thanks to Maf and the P5 technicians for building a support structure which allows the boards to be freestanding and portable
- Tested by Stephanie Beauceron in Lyon 9-10th of April
- An instruction manual is being put together so that the exhibit can be recreated by anyone in the collaboration





#### Feed Back from Stephanie

- context of the 'Geek and Japan Touch' event was not necessarily appropriate
- Expect it to be very well received when positioned at CMS as the visitors will be able to appreciate the background information much better
- May be preferable to have different shapes for different deposits

### **Building the Exhibits**

# Cathode Strip Chamber and the strip chamber

#### **Muon CSC exhibit**

## Currently two prototypes have become reality

#### Cathode Strip Chamber interactive demo







#### Try it yourself!

**Push** the green button to change modes!



A **muon** is one of the basic particles of the universe. It acts like a heavy electron — **207 times heavier!** Just like the electron, it carries a tiny bit of **electric charge** — the same stuff that shocks you when you touch a doorknob after rubbing your feet on a carpet.

Muons are important to study for two reasons. First, fast-moving muons are **evidence of heavy particles** like the Higgs or Z boson because they're often produced when heavy particles **decay** — or break down. Second, muons are the only particles that punch through the inner layers of the detector, so measurements with muons are **easier to analyze**.

- Built by team 4 to demonstrate how Muons interact with the CSC detectors within CMS
- 2 Modes Cosmics and Collisions
- Accompanied by an informative poster
- Installed in the Peter Sharp room at Point 5
- Only been set up for use b the guides this week so haven't yet received any feedback



#### Thank You for your attention ... and look out for edition 2016

## More information: cern.ch/cms-create Any Questions?

We couldn't have done it without....

- > Sponsors:
  - CMS Communication
  - CMS Technical coordination
  - IdeaSquare
  - Host states relations
- Event support team:
  - Maf Alidra (Machining)
  - Lars Roedne (Logistics)
  - > S. Beauceron, C. Lazaridis, A. Lanaro, S. Buontempo (CMS advisers)
  - Constatinos Hoursoglou (Product Design IPAC)
  - Corinne Chaumontet (Tourism expert OTPG)
  - Oliver Keller (Electronics)
  - Joona Juhani Kurikka & Harri Toivonen (3D printing)
- Other CERN outfits for their support:
  - Graphic design, EDU, COM, LOG

